SCIENCE CHINA Information Sciences, Volume 61 , Issue 6 : 062406(2018) https://doi.org/10.1007/s11432-017-9315-4

Calibration of drift-diffusion model in quasi-ballistic transport region for FinFETs

More info
  • ReceivedNov 16, 2017
  • AcceptedDec 11, 2017
  • PublishedMay 14, 2018



This work was supported in part by National Key Research and Development Plan (Grant No. 2016YFA0202101), National Natural Science Fund of China (Grant No. 61421005) and National High Technology Research and Development Program of China (863) (Grant No. 2015AA016501).


[1] Lundstrom M, Ren Z. Essential physics of carrier transport in nanoscale MOSFETs. IEEE Trans Electron Devices, 2002, 49: 133-141 CrossRef ADS Google Scholar

[2] Rahman A, Jing Guo A, Datta S. Theory of ballistic nanotransistors. IEEE Trans Electron Devices, 2003, 50: 1853-1864 CrossRef ADS Google Scholar

[3] Deleonibus S. Looking into the future of Nanoelectronics in the Diversification Efficient Era. Sci China Inf Sci, 2016, 59: 061401 CrossRef Google Scholar

[4] Cheng K, Khakifirooz A. Fully depleted SOI (FDSOI) technology. Sci China Inf Sci, 2016, 59: 061402 CrossRef Google Scholar

[5] Natori K. Ballistic metal-oxide-semiconductor field effect transistor. J Appl Phys, 1994, 76: 4879-4890 CrossRef ADS Google Scholar

[6] Natori K. Scaling limit of the MOS transistor: a ballistic MOSFET. IEICE Trans Electron, 2001, E84C: 1029--1036. Google Scholar

[7] Lundstrom M. Elementary scattering theory of the Si MOSFET. IEEE Electron Device Lett, 1997, 18: 361-363 CrossRef ADS Google Scholar

[8] Yang P Z, Lau W S, Ho V, et al. A comparison between the quasi-ballistic transport model and the conventional velocity saturation model for sub-0.1-${\mu}$m mos transistors. In: Proceedings of Electron Devices and Solid-State Circuits, Taiwan, 2007. 99--102. Google Scholar

[9] Jin S, Fischetti M V, Tang T. Theoretical Study of Carrier Transport in Silicon Nanowire Transistors Based on the Multisubband Boltzmann Transport Equation. IEEE Trans Electron Devices, 2008, 55: 2886-2897 CrossRef ADS Google Scholar

[10] Jin S, Hong S M, Choi W, et al. Coupled drift-diffusion (DD) and multi-subband Boltzmann transport equation (MSBTE) solver for 3D multi-gate transistors. In: Proceedings of IEEE International Conference on Simulation of Semiconductor Processes and Devices, Glasgow, 2013. 348--351. Google Scholar

[11] Bhuwalka K K, Wu Z, Noh H K. In$_{0.53}$Ga$_{0.47}$As-Based nMOSFET Design for Low Standby Power Applications. IEEE Trans Electron Devices, 2015, 62: 2816-2823 CrossRef ADS Google Scholar

[12] Di S, Shen L, Chang P. Performance comparison of Si, III-V double-gate n-type MOSFETs by deterministic Boltzmann transport equation solver. Jpn J Appl Phys, 2017, 56: 04CD08 CrossRef ADS Google Scholar

[13] Chang P, Liu X, Di S. Evaluation of Ballistic Transport in III-V-Based p-Channel MOSFETs. IEEE Trans Electron Devices, 2017, 64: 1053-1059 CrossRef ADS Google Scholar

[14] Yin L X, Shen L, Di S Y, et al. Investigation of thermal effects on FinFETs in the quasi-ballistic regime. In: Proceedings of International Conference on Solid State Devices and Materials, Sendai, 2017. 241--242. Google Scholar

[15] Van Roosbroeck W. Theory of the Flow of Electrons and Holes in Germanium and Other Semiconductors. Bell Syst Technical J, 1950, 29: 560-607 CrossRef Google Scholar

[16] Gang D, Xiao-Yan L, Ru-Qi H. Quantum Boltzmann equation solved by Monte Carlo method for nano-scale semiconductor devices simulation. Chin Phys, 2006, 15: 177-181 CrossRef ADS Google Scholar

[17] Lundstrom M. Drift-diffusion and computational electronics---still going strong after 40 years In: Proceedings of International Conference on Simulation of Semiconductor Processes and Devices, Washington, 2015. 1--3. Google Scholar

[18] Jin S, Pham A-T, Choi W, et al. Performance evaluation of FinFETs: from multisubband BTE to DD calibration. In: Proceedings of International Conference on Simulation of Semiconductor Processes and Devices, Nuremberg, 2016. 109--115. Google Scholar

[19] Synopsys. Sentaurus TCAD User's Manual, H-2013.03, 2013. Google Scholar

[20] Canali C, Majni G, Minder R. Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature. IEEE Trans Electron Devices, 1975, 22: 1045-1047 CrossRef ADS Google Scholar

[21] Klaassen D B M. A unified mobility model for device simulation-I. Model equations and concentration dependence. Solid-State Electron, 1992, 35: 953--959. Google Scholar

[22] Du G, Liu X, Xia Z. Monte Carlo Simulation of p- and n-channel GOI MOSFETs by Solving the Quantum Boltzmann Equation. IEEE Trans Electron Devices, 2005, 52: 2258-2264 CrossRef ADS Google Scholar

[23] Du G, Liu X Y, Xia Z L, et al. Simulation of Si and Ge UTB MOSFETs using Monte Carlo method based on the quantum Boltzmann equation. In: Proceedings of International Workshop on Computational Electronics, West Lafayette, 2004. 186--187. Google Scholar

[24] Du G, Zhang W, Wang J C, et al. Study of 20 nm bulk FINFET by using 3D full band Monte Carlo method with Effective Potential Quantum Correction. In: Proceedings of IEEE International Conference on Solid-State and Integrated Circuit Technology, Shanghai, 2010. 1952--1954. Google Scholar