logo

SCIENCE CHINA Information Sciences, Volume 61 , Issue 2 : 021301(2018) https://doi.org/10.1007/s11432-017-9262-8

mmWave communications for 5G: implementation challenges and advances

More info
  • ReceivedJul 10, 2017
  • AcceptedAug 22, 2017
  • PublishedJan 2, 2018

Abstract


Acknowledgment

This work was supported by National High-Tech Project (863) of China (Grant Nos. 2011AA010201, 2011AA010202), National Nature Science Foundation of China (Grant Nos. 61306030, 61674037), National Key R&D Program of China (Grant No. 2016YFC0800400), and Fundamental Research Funds for the Central Universities.


References

[1] Cui Q M, Gu Y, Ni W, et al. Effective capacity of licensed-assisted access in unlicensed spectrum for 5G: from theory to application. IEEE J Sel Area Commun, 2017, 35: 1754--1767. Google Scholar

[2] Rappaport T S, Sun S, Mayzus R, et al. Millimeter wave mobile communications for 5G cellular: it will work. IEEE Access, 2013, 1: 335--349. Google Scholar

[3] Ericsson white paper. 5G radio access. 2016. http://www.ericsson.com/assets/local/publications/white-papers/wp-5g.pdf. Google Scholar

[4] Onoe S. Evolution of 5G mobile technology toward 2020 and beyond. In: Proceedings of IEEE International Solid-State Circuit Conference, San Francisco, 2016. Google Scholar

[5] Poon A S, Taghivand M. Supporting and enabling circuits for antenna arrays in wireless communications. Proc IEEE, 2012, 100: 2207--2218. Google Scholar

[6] Gao X Y, Dai L L, Han S F, et al. Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays. IEEE J Sel Area Commun, 2016, 34: 998--1008. Google Scholar

[7] Gao L, Zhang S, Liu Z Y, et al. An overview of multi-antenna technologies for space-ground integrated networks. Sci China Inf Sci, 2016, 59: 121301. Google Scholar

[8] Wang C X, Wu S B, Bai L, et al. Recent advances and future challenges for massive MIMO channel measurements and models. Sci China Inf Sci, 2016, 59: 021301. Google Scholar

[9] Roh W, Seol J, Park J, et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun Mag, 2014, 52: 106--113. Google Scholar

[10] Vook F, Ghosh A, Thomas T. MIMO and bemaforming solutions for 5G technology. In: Proceedings of IEEE MTT-S International Microwave Symposium, Tampa, 2014. Google Scholar

[11] Li L M, Niu X K, Chai Y, et al. The path to 5G: mmWave aspects. J Commun Inf Netw, 2016, 2: 1--18. Google Scholar

[12] Boers M, Afshar B, Vassiliou I, et al. A 16TX/RX 60 GHz 802.11ad chipset with single coaxial interface and polarization diversity. IEEE J Solid-State Circ, 2014, 2: 344--345. Google Scholar

[13] Sadhu B, Tousi Y, Hallin J, et al. A 28 GHz 32-elements phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication. ISSCC Dig Tech Pap, 2014, 2: 128--129. Google Scholar

[14] Li L M, Niu X K, Chen L H, et al. Design of 60 GHz RF transceiver in CMOS: challenges and recent advances. China Commun, 2014, 11: 32--41. Google Scholar

[15] Hu S, Wang F, Wang H. A 28GHz/37GHz/39GHz multiband linear Doherty power amplifier for 5G massive MIMO applications. In: Proceedings of IEEE International Solid-State Circuit Conference, San Francisco, 2017. Google Scholar

[16] Kim S, Rebeiz G. A low-power BiCMOS 4-element phased array receiver for 76-84 GHz radars and communication systems. IEEE J Solid-State Circ, 2012, 47: 359--367. Google Scholar

[17] Niknejad A. mm-Wave phased array receivers. RF Blocks for Wireless Transceiver, ISSCC Short Course, 2013. Google Scholar

[18] Paramesh J, Bishop R, Soumyanath K, et al. A four-antenna cartesian-combining receiver in 90 nm CMOS. IEEE J Solid-State Circ, 2005, 40: 2515--2524. Google Scholar

[19] Heij W, Muskens H. Multi-channel receiver and optical data link for radar systems with digital beamforming. In: Proceeding of International Radar Conference, Alexandria, 1995. Google Scholar

[20] Emami S, Wiser R F, Ali E, et al. A 60 GHz CMOS phase-array transceiver pair for multi-Gb/s wireless communication. In: Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, 2011. Google Scholar

[21] Okada K, Kondou K, Miyahara M, et al. Full four-channel 6.3 Gb/s 60 GHz direct-conversion transceiver with low-power analog and digital baseband circuitry. In: Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, 2012. Google Scholar

[22] El Ayach O, Rajagopal S, Abu-Surra S, et al. Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans Wirel Commun, 2014, 13: 1499--1513. Google Scholar

[23] Rusu C, Mèndez-Rial R, Gonzalez-Prelcic N, et al. Low complexity hybrid precoding strategies for millimeter wave communication systems. IEEE Trans Wirel Commun, 2014, 13: 1499--1513. Google Scholar

[24] Yu X H, Shen J C, Zhang J, et al. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10: 485--500. Google Scholar

[25] Gao X Y, Dai L L, Han S F, et al. Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays. IEEE J Sel Area Commun, 2016, 34: 998--1009. Google Scholar

[26] Li J H, Xiao L M, Xu X B, et al. Energy-efficient Butler-matrix-based hybrid beamforming for multiuser mmWave MIMO system. Sci China Inf Sci, 2017, 60: 080304. Google Scholar

[27] Alkhateeb A, Leus G, Heath R W. Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Trans Wirel Commun, 2015, 14: 6481--6494. Google Scholar

[28] Ni W H, Dong X D. Hybrid block diagonalization for massive multiuser MIMO systems. IEEE Trans Commun, 2016, 64: 201--211. Google Scholar

[29] Zhang X Y, Molisch A F, Kung S Y. Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection. IEEE Trans Signal Process, 2005, 53: 4091--4103. Google Scholar

[30] Sohrabi F, Yu W. Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J Sel Top Signal Process, 2016, 10: 501--513. Google Scholar

[31] Sohrabi F, Yu W. Hybrid analog and digital beamforming for mmWave OFDM large-scale antenna arrays. IEEE J Sel Area Commun, 2017, 35: 1432--1443. Google Scholar

[32] Zhang J h, Tang P, Tian L, et al. 6--100 GHz research progress and challenges from a channel perspective for fifth generation (5G) and future wireless communication. Sci China Inf Sci, 2017, 60: 080301. Google Scholar

[33] Adhikary A, Al Safadi E, Samimi M K, et al. Joint spatial division and multiplexing for mm-Wave channels. IEEE J Sel Area Commun, 2014, 32: 1239--1255. Google Scholar

[34] Cheng X T, Luo Z Q. Compensation of transmitter I/Q imbalance in millimeter-Wave SC-FDE systems. IEEE Trans Veh Technol, 2017, 66: 4472--4476. Google Scholar

[35] Chen X M, Fang C, Zou Y N, et al. Beamforming MIMO-OFDM systems in the presence of phase noises at millimeter-Wave frequencies. In: Proceedings of IEEE Wireless Communications and Networking Conference Workshops (WCNCW), San Francisco, 2017. Google Scholar

[36] Bazzi S, Xu W. Robust Bayesian precoding for mitigation of TDD hardware calibration errors. IEEE Signal Process Lett, 2016, 23: 929--933. Google Scholar

[37] Xia P F, Heath R W, Gonzalez-Prelcic N. Robust analog precoding designs for millimeter wave MIMO transceivers with frequency and time division duplexing. IEEE Trans Commun, 2016, 64: 4622--4634. Google Scholar

[38] Heath R W, Gonzalez-Prelcic N, Rangan S, et al. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10: 436--453. Google Scholar

[39] Hur S, Kim T, Love D J, et al. Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans Commun, 2013, 61: 4391--4403. Google Scholar

[40] Alkhateeb A, El Ayach O, Leus G, et al. Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J Sel Top Signal Process, 2014, 8: 831--846. Google Scholar

[41] Xiao Z Y, Xia P F, Xia X G. Codebook design for millimeter-wave channel estimation with hybrid precoding structure. IEEE Trans Wirel Commun, 2017, 16: 141--153. Google Scholar

[42] Kokshoorn M, Chen H, Wang P, et al. Millimeter wave MIMO channel estimation using overlapped beam patterns and rate adaptation. IEEE Trans Signal Process, 2017, 65: 601--616. Google Scholar

[43] Ghauch H, Kim T, Bengtsson M, et al. Subspace estimation and decomposition for large millimeter-wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10: 528--542. Google Scholar

[44] Lee J, Gil G T, Lee Y H. Channel estimation via orthogonal matching pursuit for hybrid MIMO systems in millimeter wave communications. IEEE Trans Commun, 2016, 64: 2370--2386. Google Scholar

[45] Swindlehurst A L, Ayanoglu E, Heydari P, et al. Millimeter-wave massive MIMO: the next wireless revolution? IEEE Commun Mag, 2014, 52: 56--62. Google Scholar

[46] Alkhateeby A, Leusz G, Heath R W. Compressed sensing based multi-user millimeter wave systems: how many measurements are needed? In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, 2015. 2909--2913. Google Scholar

[47] Kokshoorn M, Chen H, Li Y H, et al. Beam-On-Graph: simultaneous channel estimation in multi-user millimeter wave MIMO systems. ArXiv Preprint,. arXiv Google Scholar

[48] Rangan S. Generalized approximate message passing for estimation with random linear mixing. In: Proceedings of IEEE International Symposium on Information Theory Proceedings, St. Petersburg, 2011. 2168--2172. Google Scholar

[49] Gao Z, Hu C, Dai L L, et al. Channel estimation for millimeter-wave massive MIMO with hybrid precoding over frequency-selective fading channels. IEEE Commun Lett, 2016, 20: 1259--1262. Google Scholar

[50] Zhou Z, Fang J, Yang L X, et al. Channel estimation for millimeter-wave multiuser MIMO systems via PARAFAC decomposition. IEEE Trans Wirel Commun, 2016, 15: 7501--7516. Google Scholar

[51] Zhou Z, Fang J, Yang L X, et al. Low-rank tensor decomposition-aided channel estimation for millimeter wave MIMO-OFDM systems. IEEE J Sel Area Commun, 2017, 35: 1524--1538. Google Scholar

[52] Bogale T E, Le L B, Haghighat A, et al. On the number of RF chains and phase shifters, and scheduling design with hybrid analog-digital beamforming. IEEE Trans Wirel Commun, 2016, 15: 3311--3326. Google Scholar

[53] Bogale T E, Le L B, Wang X B. Hybrid analog-digital channel estimation and beamforming: training-throughput tradeoff. IEEE Trans Commun, 2015, 63: 5235--5249. Google Scholar

[54] Hur S, Baek S, Kim B, et al. Proposal on millimeter-wave channel modeling for 5G cellular system. IEEE J Sel Top Signal Process, 2016, 10: 454--469. Google Scholar

[55] Zhao L, Ng D W K, Yuan J H. Multi-user precoding and channel estimation for hybrid millimeter wave systems. IEEE J Sel Area Commun, 2017, 35: 1576--1590. Google Scholar

[56] Shafin R, Liu L J, Zhang J Z, et al. DoA estimation and capacity analysis for 3-D millimeter wave massive-MIMO/FD-MIMO OFDM systems. IEEE Trans Wirel Commun, 2016, 15: 6963--6978. Google Scholar

[57] Zhu G X, Huang K, Lau V K N, et al. Hybrid beamforming via the kronecker decomposition for the millimeter-Wave massive MIMO systems. ArXiv Preprint,. arXiv Google Scholar

[58] Palacios J, De Donno D, Widmer J. Tracking mm-Wave channel dynamics: fast beam training strategies under mobility. ArXiv Preprint,. arXiv Google Scholar

[59] Bae J, Lim S H, Yoo J H, et al. New beam tracking technique for millimeter wave-band communications. ArXiv Preprint,. arXiv Google Scholar

[60] Guo Y C, Tang J L, Wu G, et al. Power allocation for massive MIMO: impact of power amplifier efficiency. Sci China Inf Sci, 2016, 59: 022301. Google Scholar

[61] Chen L H, Li L M, Cui T J. A 1 V 18 dBm 60 GHz power amplifier with 24 dB gain in 65 nm LP CMOS. In: Proceedings of Asia Pacific Microwave Conference, Kaohsiung, 2012. 13--15. Google Scholar

[62] Floyd B. A 16--18.8 GHz sub-integer-N frequency synthesizer for 60 GHz transceiver. IEEE J Solid-State Circ, 2012, 43: 1076--1086. Google Scholar

[63] Li L M, Reynaert P, Steyaert M. Design and analysis of a 90 nm mm-Wave oscillator using inductive-division LC tank. IEEE J Solid-State Circ, 2009, 44: 1950--1958. Google Scholar

[64] Niu X K, Li L M, Wang D M. A 50 GHz VCO in 65 nm LP CMOS for mm-Wave applications. In: Proceedings of the 13th IEEE International Conference on Solid-State and Integrated Circuit Technology, Hangzhou, 2016. Google Scholar

[65] Mirzaei A, Heidari M, Bagheri R, et al. The quadrature LC oscillators: a complete portrait on injection locking. IEEE J Solid-State Circ, 2007, 42: 1916--1932. Google Scholar

[66] Miller R L. Fractional-frequency generators utilizing regenerative modulation. Proc IRE, 1939, 27: 446--457. Google Scholar

[67] Niu X K, Li L M, Wang D M. A compact wide-locking range divide-by-4 static divider for mm-Wave applications. In: Proceedings of Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications, Espoo, 2016. Google Scholar

[68] Chai Y, Li L M, Zhao D X, et al. A 20-to-75 dB gain 5 dB noise figure broadband 60 GHz receiver with digital calibration. In: Proceedings of IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, 2016. Google Scholar

[69] Chai Y, Niu X K, He L, et al. A 60-GHz CMOS broadband receiver with digital calibration, 20-to-75-dB gain, and 5-dB noise figure. IEEE Trans Microw Theory Tech, 2017, 65: 3989--4001. Google Scholar

[70] Okada K, Li N, Matsushita K, et al. A 60 GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE802.15.3c. IEEE J Solid-State Circ, 2011, 46: 2988--3004. Google Scholar

[71] Saito N, Tsukizawa T, Shirakata N, et al. A fully integrated 60 GHz CMOS transceiver chipset based on WiGig/IEEE 802.11ad with built-in self calibration for mobile usage. IEEE J Solid-State Circ, 2013, 48: 3146--3159. Google Scholar

[72] Li L M, Reynaert P, Steyaert M. A 60 GHz 15.7 mW static frequency divider in 90nm CMOS. In: Proceedings of ESSCIRC, Seville, 2010. 246--249. Google Scholar

[73] He L, Li L M, Wang Z G. A low-power wideband dB-linear variable gain amplifier with DC offset cancellation for 60 GHz receiver. In: Proceedings of the 17th Annual Wireless and Microwave Technology Conference (WAMICON), Clearwater, 2016. Google Scholar

[74] Okada K, Kondou K, Miyahara M, et al. Full four-channel 6.3-Gb/s 60 GHz CMOS transceiver with low-power analog and digital baseband circuitry. IEEE J Solid-State Circ, 2013, 48: 46--65. Google Scholar

[75] Mitomo T, Tsutsumi Y, Hoshino H, et al. A 2-Gb/s throughput CMOS transceiver chipset with in-package antenna for 60-GHz short-range wireless communication. IEEE J Solid-State Circ, 2012, 47: 3160--3171. Google Scholar

[76] Wu H, Wang N Y, Du Y, et al. A blocker-tolerant current mode 60-GHz receiver with 7.5-GHz bandwidth and 3.8-dB minimum NF in 65-nm CMOS. IEEE Trans Microw Theory Tech, 2015, 63: 1053--1062. Google Scholar

qqqq

Contact and support