logo

SCIENCE CHINA Information Sciences, Volume 61 , Issue 2 : 022201(2018) https://doi.org/10.1007/s11432-017-9219-1

Parameter influence on electron collectionefficiency of a bare electrodynamic tether

More info
  • ReceivedApr 28, 2017
  • AcceptedJul 5, 2017
  • PublishedDec 22, 2017

Abstract


Acknowledgment

This work was supported by Discovery Grant and Discovery Accelerate Supplement Grant of Natural Sciences and Engineering Research Council of Canada.


References

[1] Zhu Z H. Mission design for a cubesat deorbit experiment using an electrodynamic tether. In: Proceedings of AIAA/AAS Astrodynamics Specialist Conference, Long Beach, 2016. 5573--5579. Google Scholar

  • Figure 1

    (Color online) Profiles of electrical current and potential bias along a bent tether.

  • Figure 2

    (Color online) Design schematic of electrical circuit at the cathodic end.

  • Figure 3

    (Color online) Comparisons of current profiles along a straight tether in different orbits with different calculation methods. (a) Equatorial orbit; (b) 53$^{\circ}$ inclined orbit; (c) Polar orbit.

  • Figure 4

    (Color online) Analysis of the number of tether elements. (a) Electrical current profile along tether; (b) EMF profile along tether.

  • Figure 5

    (Color online) Analysis of the tether bending effect. (a) Tether profile; (b) EMF profile along tether; protectłinebreak (c) electrical current profile along tether; (d) potential bias profile along tether.

  • Figure 6

    (Color online) Analysis of the impedance $Z_{T}$. (a) Electrical current profile along tether; (b) potential bias profile along tether.

  • Figure 7

    (Color online) The analysis of the potential bias of battery $\varPhi_{\rm~PW}$. (a) Electrical current profile along tether; protectłinebreak (b) potential bias profile along tether.

  • Table 1   Physical parameters of EDT system
    Parameter Value
    Tether material Aluminum
    Elastic modulus of tether (${\rm~N}\cdot~{\rm~m}^{~-~2})$ 7.2 $\times~$ 10$^{10}$
    Density of tether material (kg/m$^{3})$ 2700
    Tether length (m) 500
    Tether width (m) 0.004
    Tether thickness ($\mu$m) 35
    Mass of main satellite (kg) 2
    Mass of sub-satellite (kg) 2
    Dimensions of main satellite (m) 0.1 $\times~$ 0.1 $\times~$ 0.1
    Dimensions of sub-satellite (m) 0.1 $\times~$ 0.1 $\times~$ 0.1
  • Table 2   Maximum current at the anodic end (A)
    Name The first reference method The second reference method The proposed method
    Equatorial orbit 0.1070854 0.1070634 0.1070633
    53$^{\circ}$ inclined orbit 0.0301559 0.0301567 0.0301569
    Polar orbit 0.0074935 0.0074924 0.0074921
  • Table 3   Length of positively biased segment in different cases (m)
    Name The first reference method The second reference method The proposed method
    Equatorial orbit 497.5217 497.5222 497.5222
    53$^{\circ}$ inclined orbit 498.5358 498.5365 498.5365
    Polar orbit 482.3310 482.3293 482.3293
  • Table 4   Maximum current and potential bias
    Name 5 elements 10 elements 15 elements 20 elements 25 elements
    Current $I_{B~}$ (A) 0.116 0.110 0.108 0.107 0.106
    Potential bias $\varPhi_{A}$ (V) 109.991 109.818 109.777 109.753 109.744
  • Table 5   The length $L_{B}$ in different cases
    Name $\delta~$ = 0.04 $\delta~$ = 0.09 $\delta~$ = 0.13 $\delta~$ = 0.17 $\delta~$ = 0.20 $\delta~$ = 0.24 $\delta~$ = 0.27 $\delta~$ = 0.30 $\delta~$ = 0.32
    Length $L_{B}$ (m) 497.53 497.44 497.28 497.01 496.58 495.85 494.44 490.74 471.55
  • Table 6   Length $L_{B}$ and maximum current $I_{A}$ in differentcases
    $Z_{T}$=5 $\Omega~$ $Z_{T}$=50 $\Omega$ $Z_{T}$=100 $\Omega$ $Z_{T}$=150 $\Omega$ $Z_{T}$=200 $\Omega$
    Length $L_{B~}$ (m) 497.52 476.77 456.56 438.71 422.68
    Current $I_{A~}$ (A) 0.1071 0.1006 0.0943 0.0890 0.0844
    Potential bias $\varPhi_{C}$ (V) $-0.5353$ $-5.0297$ $-9.4338$ $-13.3458$ $-16.8703$
  • Table 7   The length $L_{B}$ in different cases
    $\varPhi_{\rm~PW}$ (V) 0 10 20 30 40 50
    Length $L_{B}$ (m) 273.96 317.84 362.07 406.72 451.85 497.52
qqqq

Contact and support