logo

SCIENCE CHINA Information Sciences, Volume 61 , Issue 6 : 062402(2018) https://doi.org/10.1007/s11432-017-9198-1

High-voltage trench-gate hole-gas enhancement-mode HEMT with multi-conduction channels

More info
  • ReceivedJan 28, 2017
  • AcceptedJul 26, 2017
  • PublishedNov 20, 2017

Abstract


Acknowledgment

This work was supported in part by National Natural Science Foundation of China (Grant No. 51677021) and Fundamental Research Funds for the Central Universities (Grant No. ZYGX2014Z006).


References

[1] Chow T P, Tyagi R. Wide bandgap compound semiconductors for superior high-voltage unipolar power devices. IEEE Trans Electron Devices, 1994, 41: 1481-1483 CrossRef ADS Google Scholar

[2] Ishida M, Ueda T, Tanaka T. GaN on Si Technologies for Power Switching Devices. IEEE Trans Electron Devices, 2013, 60: 3053-3059 CrossRef ADS Google Scholar

[3] Wang M, Wang Y, Zhang C. 900 V/1.6 ${\rm~~m}\Omega\cdot{\rm~~cm}^{2}$ Normally Off ${\rm~~Al}_{2}{\rm~~O}_{3}/{\rm~~GaN}$ MOSFET on Silicon Substrate. IEEE Trans Electron Devices, 2014, 61: 2035-2040 CrossRef ADS Google Scholar

[4] Yang S, Lu Y Y, Liu S H, et al. Impact of VTH shift on RON in E/D-Mode GaN-on-Si power transistors: role of dynamic stress and gate overdrive. In: Proceedings of the 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Prague, 2016. 263--266. Google Scholar

[5] Lu Y, Li B, Tang X. Normally off Al$_{2}$O$_{3}$-AlGaN/GaN MIS-HEMT With Transparent Gate Electrode for Gate Degradation Investigation. IEEE Trans Electron Devices, 2015, 62: 821-827 CrossRef ADS Google Scholar

[6] Choi W, Seok O, Ryu H. High-Voltage and Low-Leakage-Current Gate Recessed Normally-Off GaN MIS-HEMTs With Dual Gate Insulator Employing PEALD-${\rm~~SiN}_{x}$/RF-Sputtered-${\rm~~HfO}_{2}$. IEEE Electron Device Lett, 2014, 35: 175-177 CrossRef ADS Google Scholar

[7] Zhou Q, Liu L, Zhang A B, et al. 7.6 V threshold voltage high performance normally-off Al2O3/GaN MOSFET achieved by interface charge engineering. IEEE Electron Dev Lett, 2015, 37: 165--168. Google Scholar

[8] Xiong J, Yang C, Wei J. Novel high voltage RESURF AlGaN/GaN HEMT with charged buffer layer. Sci China Inf Sci, 2016, 59: 042410 CrossRef Google Scholar

[9] Tang Z, Jiang Q, Lu Y. 600-V Normally Off ${\rm~~SiN}_{x}$/AlGaN/GaN MIS-HEMT With Large Gate Swing and Low Current Collapse. IEEE Electron Device Lett, 2013, 34: 1373-1375 CrossRef ADS Google Scholar

[10] Yong Cai , Yugang Zhou , Chen K J. High-Performance Enhancement-Mode AlGaN/GaN HEMTs Using Fluoride-Based Plasma Treatment. IEEE Electron Device Lett, 2005, 26: 435-437 CrossRef ADS Google Scholar

[11] Feng Z H, Zhou R, Xie S Y. 18-GHz 3.65-W/mm Enhancement-Mode AlGaN/GaN HFET Using Fluorine Plasma Ion Implantation. IEEE Electron Device Lett, 2010, 31: 1386-1388 CrossRef ADS Google Scholar

[12] Su L Y, Lee F, Huang J J. Enhancement-mode GaN-based high-electron mobility transistors on the Si substrate with a P-Type GaN cap layer. IEEE Trans Electron Dev, 2014, 61: 460--465. Google Scholar

[13] Uemoto Y, Hikita M, Ueno H, et al. A normally-off AlGaN/GaN transistor with R$_{\rm~~on}$A=2.6 m$\Omega$$\cdot$cm$^2$ and BV$_{\rm~~ds}$=łinebreak 640 V using conductivity modulation. In: Proceedings of Electron Devices Meeting (IEDM), San Francisco, 2006. 1--4. Google Scholar

[14] Hung T H, Park P S, Krishnamoorthy S. Interface Charge Engineering for Enhancement-Mode GaN MISHEMTs. IEEE Electron Device Lett, 2014, 35: 312-314 CrossRef ADS Google Scholar

[15] Kim K W, Jung S D, Kim D S. Effects of TMAH Treatment on Device Performance of Normally Off $\hbox{Al}_{2}\hbox{O}_{3}/\hbox{GaN}$ MOSFET. IEEE Electron Device Lett, 2011, 32: 1376-1378 CrossRef ADS Google Scholar

[16] Neugebauer J, Van de Walle C G. Role of hydrogen in doping of GaN. Appl Phys Lett, 1996, 68: 1829-1831 CrossRef ADS Google Scholar

[17] Nakajima A, Sumida Y, Dhyani M H. GaN-Based Super Heterojunction Field Effect Transistors Using the Polarization Junction Concept. IEEE Electron Device Lett, 2011, 32: 542-544 CrossRef ADS Google Scholar

[18] Hilt O, Brunner F, Cho E, et al. Normally-off high-voltage p-GaN gate GaN HFET with carbon-doped buffer. In: Proceedings of the 23rd International Symposium on Power Semiconductor Devices & IC's (ISPSD), San Diego, 2011. 239--242. Google Scholar

[19] Song D, Liu J, Cheng Z. Normally Off AlGaN/GaN Low-Density Drain HEMT (LDD-HEMT) With Enhanced Breakdown Voltage and Reduced Current Collapse. IEEE Electron Device Lett, 2007, 28: 189-191 CrossRef ADS Google Scholar

[20] Wei J, Liu S, Li B. Low On-Resistance Normally-Off GaN Double-Channel Metal-Oxide-Semiconductor High-Electron-Mobility Transistor. IEEE Electron Device Lett, 2015, 36: 1287-1290 CrossRef ADS Google Scholar

[21] Wei J, Jiang H, Jiang Q. Proposal of a GaN/SiC Hybrid Field-Effect Transistor for Power Switching Applications. IEEE Trans Electron Devices, 2016, 63: 2469-2473 CrossRef ADS Google Scholar

[22] Bougrov V, Levinshtein M E, Rumyantsev S L, et al. Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe. New York: John Wiley & Sons, Inc. 2001. 1--30. Google Scholar

[23] Lu B, Matioli E, Palacios T. Tri-Gate Normally-Off GaN Power MISFET. IEEE Electron Device Lett, 2012, 33: 360-362 CrossRef ADS Google Scholar

[24] Yang C, Xiong J, Wei J. Analytical model and new structure of the enhancement-mode polarization-junction HEMT with vertical conduction channel. Superlattices MicroStruct, 2016, 92: 92-99 CrossRef ADS Google Scholar

[25] Zhou Q, Chen W, Liu S. Schottky-Contact Technology in InAlN/GaN HEMTs for Breakdown Voltage Improvement. IEEE Trans Electron Devices, 2013, 60: 1075-1081 CrossRef ADS Google Scholar