logo

SCIENCE CHINA Information Sciences, Volume 60 , Issue 11 : 110203(2017) https://doi.org/10.1007/s11432-017-9109-9

Event-triggered encirclement control of multi-agent systems with bearing rigidity

More info
  • ReceivedApr 6, 2017
  • AcceptedMay 17, 2017
  • PublishedSep 25, 2017

Abstract


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant Nos. 61473005, 61403406).


References

[1] Haque M A. Biologically inspired heterogeneous multi-agent systems. Dissertation for Ph.D. Degree. Atlanta: Georgia Institute of Technology, 2010. 9--15. Google Scholar

[2] Marshall J A, Broucke M E, Francis B A. Formations of Vehicles in Cyclic Pursuit. IEEE Trans Automat Contr, 2004, 49: 1963-1974 CrossRef Google Scholar

[3] Wang X, Zeng Z, Cong Y. Multi-agent distributed coordination control: Developments and directions via graph viewpoint. Neurocomputing, 2016, 199: 204-218 CrossRef Google Scholar

[4] Ji M, Ferrari-Trecate G, Egerstedt M. Containment control in mobile networks. IEEE Trans Automat Contr, 2008, 53: 1972-1975 CrossRef Google Scholar

[5] Li Z, Ren W, Liu X. Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders. Int J Robust NOnlinear Control, 2013, 23: 534-547 CrossRef Google Scholar

[6] Franchi A, Petitti A, Rizzo A. Decentralized parameter estimation and observation for cooperative mobile manipulation of an unknown load using noisy measurements. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, 2015. 5517--5522. Google Scholar

[7] Parrish J K, Viscido S V, Grünbaum D. Self-organized fish schools: an examination of emergent properties.. Biol Bull, 2002, 202: 296-305 CrossRef PubMed Google Scholar

[8] Kim T H, Sugie T. Cooperative control for target-capturing task based on a cyclic pursuit strategy. Automatica, 2007, 43: 1426-1431 CrossRef Google Scholar

[9] Wen G, Duan Z, Chen G. Consensus tracking of multi-agent systems with lipschitz-type node dynamics and switching topologies. IEEE Trans Circuits Syst I, 2014, 61: 499-511 CrossRef Google Scholar

[10] Zheng R, Liu Y, Sun D. Enclosing a target by nonholonomic mobile robots with bearing-only measurements. Automatica, 2015, 53: 400-407 CrossRef Google Scholar

[11] Daingade S, Sinha A. Target Centric Cyclic Pursuit using Bearing Angle Measurements Only. IFAC Proc Volumes, 2014, 47: 491-496 CrossRef Google Scholar

[12] Zhao S, Zelazo D. Bearing Rigidity and Almost Global Bearing-Only Formation Stabilization. IEEE Trans Automat Contr, 2016, 61: 1255-1268 CrossRef Google Scholar

[13] Zhao S, Zelazo D. Localizability and distributed protocols for bearing-based network localization in arbitrary dimensions. Automatica, 2016, 69: 334-341 CrossRef Google Scholar

[14] Yu H, Antsaklis P J. Event-triggered real-time scheduling for stabilization of passive and output feedback passive systems. In: Proceedings of the 2011 American Control Conference, San Francisco, 2011. 1674--1679. Google Scholar

[15] Li S, Xu B. Event-triggered control for discrete-time uncertain linear parameter-varying systems. In: Proceedings of the 32nd Chinese Control Conference, Xi'an, 2013. 273--278. Google Scholar

[16] Lemmon M, Chantem T, Hu X S, et al. On self-triggered full-information h-infinity controllers. In: Proceedings of the 10th International Conference on Hybrid Systems: Computation and Control. Berlin: Springer, 2007. 371--384. Google Scholar

[17] Dimarogonas D V, Frazzoli E, Johansson K H. Distributed Event-Triggered Control for Multi-Agent Systems. IEEE Trans Automat Contr, 2012, 57: 1291-1297 CrossRef Google Scholar

[18] Fan Y, Feng G, Wang Y. Distributed event-triggered control of multi-agent systems with combinational measurements. Automatica, 2013, 49: 671-675 CrossRef Google Scholar

[19] Mazo M, Tabuada P. Decentralized Event-Triggered Control Over Wireless Sensor/Actuator Networks. IEEE Trans Automat Contr, 2011, 56: 2456-2461 CrossRef Google Scholar

[20] Tang T, Liu Z X, Chen Z Q. Event-triggered formation control of multi-agent systems. In: Proceedings of the 30th Chinese Control Conference, Yantai, 2011. 4783--4786. Google Scholar

[21] Hu S, Yue D. Event-based H filtering for networked system with communication delay. Signal Processing, 2012, 92: 2029-2039 CrossRef Google Scholar

[22] Yin X, Yue D. Event-triggered tracking control for heterogeneous multi-agent systems with Markov communication delays. J Franklin Institute, 2013, 350: 1312-1334 CrossRef Google Scholar

[23] Tallapragada P, Chopra N. On event triggered tracking for nonlinear systems. IEEE Trans Automat Contr, 2013, 58: 2343-2348 CrossRef Google Scholar

[24] Liu T, Hill D J, Jiang Z P. Lyapunov formulation of ISS cyclic-small-gain in continuous-time dynamical networks. Automatica, 2011, 47: 2088-2093 CrossRef Google Scholar

[25] Dashkovskiy S N, Rüffer B S, Wirth F R. Small Gain Theorems for Large Scale Systems and Construction of ISS Lyapunov Functions. SIAM J Control Optim, 2010, 48: 4089-4118 CrossRef Google Scholar

[26] Qin J, Wang X, Liu T. Second-order consensus with unknown dynamics via cyclic-small-gain method. IET Control Theor Appl, 2012, 6: 2748-2756 CrossRef Google Scholar

[27] Sontag E D. Smooth stabilization implies coprime factorization. IEEE Trans Automat Contr, 1989, 34: 435-443 CrossRef Google Scholar

[28] Jiang Z P, Mareels I M Y, Wang Y. A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems. Automatica, 1996, 32: 1211-1215 CrossRef Google Scholar