logo

SCIENCE CHINA Information Sciences, Volume 60 , Issue 6 : 060301(2017) https://doi.org/10.1007/s11432-016-9067-7

Options for continuous radar Earth observations

More info
  • ReceivedOct 15, 2016
  • AcceptedJan 23, 2017
  • PublishedMay 24, 2017

Abstract


References

[1] Tomiyasu K, Pacelli J L. Synthetic aperture radar imaging from an inclined geosynchronous orbit. IEEE Trans Geosci Remote Sens, 1983, GE-21: 324-329 CrossRef Google Scholar

[2] Madsen S, Edelstein W, DiDomenico L D, et al. A geosynchronous synthetic aperture radar; for tectonic mapping, disaster management and measurements of vegetation and soil moisture. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Sydney, 2001. 1: 447--449. Google Scholar

[3] Prati C, Rocca F, Giancola D, et al. Passive system reusing backscattered digital audio broadcasting signals. IEEE Trans Geosci Remote Sens, 1998, 36: 197-329 Google Scholar

[4] Edelstein W N, Madsen S N, Moussessian A, et al. Concepts and technologies for synthetic aperture radar from MEO and geosynchronous orbits. Proc SPIE, 2005, 5659, doi: 10-329 Google Scholar

[5] Hu C, Li Y H, Dong X C, et al. Optimal data acquisition and height retrieval in repeat-track geosynchronous SAR interferometry. Remote sens, 2015, 7: 13367-13389 CrossRef Google Scholar

[6] Hu C, Li Y H, Dong X C, et al. Performance analysis of L-band geosynchronous SAR imaging in the presence of ionospheric scintillation. IEEE Trans Geosci Remote Sens, 2017, 55: 159-172 CrossRef Google Scholar

[7] Dong X C, Hu C, Tian Y, et al. Experimental study of ionospheric impacts on geosynchronous SAR using GPS signals. IEEE J Sel Top Appl Earth Observ Remote Sens, 2016, 9: 2171-2183 CrossRef Google Scholar

[8] Zhang Q J, Gao G T, Gao W J, et al. 3D orbit selection for regional observation GEO SAR. Neurocomputing, 2014, 151: 692-699 Google Scholar

[9] Hu C, Long T, Zeng T, et al. The accurate focusing and resolution analysis method in geosynchronous SAR. IEEE Trans Geosci Remote Sens, 2011, 49: 3548-3563 CrossRef Google Scholar

[10] Hu C, Tian Y, Yang X P, et al. Background ionosphere effects on geosynchronous SAR focusing: theoretical analysis and verification based on the BeiDou navigation satellite system (BDS). IEEE J Sel Top Appl Earth Observ Remote Sens, 2016, 9: 1143-1162 CrossRef Google Scholar

[11] GeoSTARe. ESA contract N 40001085494/13/NL/CT. Study on utilisation of future telecom satellites for Earth observations. 2013. Google Scholar

[12] Monti Guarnieri A, Bombacib O, Catalanob T F, et al. ARGOS: a fractioned geosynchronous SAR. Acta Astronaut, 2015. In press. Google Scholar

[13] Monti Guarnieri A, Broquetas A, Recchia A, et al. Advanced radar geosynchronous observation system: ARGOS. IEEE Geosci Remote Sens Lett, 2015, 12: 1406-1410 CrossRef Google Scholar

[14] Recchia A, Monti Guarnieri A, et al. Impact of scene decorrelation on geosynchronous SAR data focusing, geoscience and remote sensing. IEEE Trans Geosci Remote Sens, 2016, 54: 1635-1646 CrossRef Google Scholar

[15] D'Aria D, Leanza A, Monti-Guarnieri A, et al. Decorrelating targets: models and measures. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, 2016. 3194--3197. Google Scholar

[16] Recchia A, Monti Guarnieri A, Belotti M, et al. Demonstrative geosynchronous SAR products affected by clutter and APS decorrelation. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015. 1265--1268. Google Scholar

[17] Pichelli E, Ferretti R, Cimini D, et al. InSAR water vapor data assimilation into mesoscale model MM5: technique and pilot study. IEEE J Sel Top Appl Earth Observ Remote Sens, 2015, 8: 3859-3875 CrossRef Google Scholar

[18] Wadge G, Monti Guarnie A, Hobbs S E, et al. Potential atmospheric and terrestrial applications of a geosynchronous radar. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Québec, 2014. 946-949. Google Scholar

[19] Bevis M, Businger S, Chiswell S, et al. GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Meteorol Climatol, 1994, 33: 379-386 CrossRef Google Scholar

[20] Sato K, Realini E, Tsuda T, et al. A high-resolution, precipitable water vapor monitoring system using a dense network of GNSS receivers. Journal Disaster Res, 2013, 8: 37-47 CrossRef Google Scholar

[21] Cheng S L, Perissin D, Lin H, et al. Atmospheric delay analysis from GPS meteorology and InSAR APS. J Atmos Sol-Terr Phys, 2012, 86: 71-82 CrossRef Google Scholar

[22] Bock Y, Wdowinski S, Ferretti A, et al. Recent subsidence of the Venice Lagoon from continuous GPS and interferometric synthetic aperture radar. Geochem Geophys Geosyst, 2012, doi: 10-82 Google Scholar

[23] Perler D. Water vapor tomography using global navigation satellite systems. Dissertation for the Doctoral Degree. Swiss Federal Institute of Technology Zurich, 2011. \url{http://dx.doi.org/10.3929/ethz-a-006875504}. Google Scholar

[24] Awange J. Environmental Monitoring using Global Navigation Satellite Systems. Berlin/Heidelberg: Springer-Verlag, 2012. Google Scholar

[25] Onn F, Zebker H. Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network. J Geophys Res, 2006, 111, doi: 10-82 Google Scholar

[26] De Zan F, Zonno M, López-Dekker P, et al. Phase inconsistencies and water effects in SAR interferometric stacks. In: Proceedings of Fringe 2015 Workshop, Frascati, 2015. Google Scholar

[27] Entekhabi D, Njoku E G, O'Neill P E, et al. The soil moisture active passive (SMAP) mission. Proc IEEE, 2010, 98: 704-716 CrossRef Google Scholar

[28] Rocca F, Rucci A, Ferretti A, et al. Advanced InSAR interferometry for reservoir monitoring. First Break, 2013, 31: 77-85 Google Scholar

[29] M. L'Abbate, Germani C, Torre A, et al. Compact SAR and micro satellite solutions for Earth observation. In: Proceedings of 31st Space Symposium on Technical Track, Colorado, 2015. Google Scholar

[30] Ferretti A. Satellite InSAR Data: Reservoir Monitoring from Space (EET 9). EAGE Publications, 2014. Google Scholar

[31] Bruno D, Hobbs S. Radar imaging from geosynchronous orbit: temporal decorrelation aspects. IEEE Trans Geosci Remote Sens, 2010, 48: 2924-2929 CrossRef Google Scholar

[32] Belotti M, Broquetas A, Leanza A, et al. An efficient method for the azimuth compression of geosynchronous SAR data through sub-apertures processing. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, 2013. 2047--2050. Google Scholar

[33] Lombardo P, Greco M, Gini F, et al. Impact of clutter spectra on radar performance prediction. IEEE Trans Aerosp Electron Syst, 2001, 37: 1022-1038 CrossRef Google Scholar

[34] Rodon J R, Broquetas A, Monti Guarnieri A, et al. Geosynchronous SAR focusing with atmospheric phase screen retrieval and compensation. IEEE Trans Geosci Remote Sens, 2013, 51: 4397-4404 CrossRef Google Scholar

[35] Guarnieri A M, Tebaldini S, Rocca F, et al. GEMINI: geosynchronous SAR for Earth monitoring by interferometry and imaging. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Munich, 2012. 210--213. Google Scholar

[36] Chen X L, Guan J, Huang Y, et al. Radon-linear canonical ambiguity function-based detection and estimation method for marine target with micromotion. IEEE Trans Geosci Remote Sens, 2015, 53: 2225-2240 CrossRef Google Scholar

qqqq

Contact and support