logo

SCIENCE CHINA Information Sciences, Volume 60 , Issue 8 : 082501(2017) https://doi.org/10.1007/s11432-016-9061-4

An efficient quantum blind digital signature scheme

More info
  • ReceivedJan 18, 2017
  • AcceptedMar 9, 2017
  • PublishedJul 10, 2017

Abstract


Acknowledgment

Hong LAI was supported by Fundamental Research Funds for the Central Universities (Grant No. XDJK2016C043), 1000-Plan of Chongqing by Southwest University (Grant No. SWU116007), and Doctoral Program of Higher Education (Grant No. SWU115091). Mingxing LUO was supported by Sichuan Youth Science & Technique Foundation (Grant No.2017JQ0048). Josef PIEPRZYK was supported by National Science Centre, Poland (Grant No. UMO-2014/15/B/ST6/05130). Shudong Li was supported by National Natural Science Foundation of China (Grant Nos. 61672020, 61662069, 61472433), Project Funded by China Postdoctoral Science Foundation (Grant Nos. 2013M542560, 2015T81129) and A Project of Shandong Province Higher Educational Science and Technology Program (Grant Nos. J16LN61, 2016ZH054). The paper was also supported by A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology (CICAEET).

  • Figure 1

    (Color online) The sketch for quantum key distribution of our QDS scheme, where $K_{\rm AB},\; K^{i}_{\rm AB}$, $K_{\rm AC},\;K^{i}_{\rm AC}$, $K_{\rm BC}$, and $K^{i}_{\rm BC}(i=1,2,\ldots,\alpha)$ are key matrices.

  • Figure 2

    (Color online) The sketch for the process of signature and verification of our QDS scheme, where $K_{\rm AB}=\{K^{1}_{\rm AB},K^{2}_{\rm AB},\ldots,K^{\alpha}_{\rm AB}\}$, $K_{\rm AC}=\{K^{1}_{\rm AC},K^{2}_{\rm AC},\ldots,K^{\alpha}_{\rm AC}\}$, $K_{\rm BC}=\{K^{1}_{\rm BC},K^{2}_{\rm BC},\ldots,K^{\alpha}_{\rm BC}\}$ are all in the form of matrices; $M'=E_{K_{\rm AB}}\{M\}= M\times K_{\rm AB}$, $M''=E_{K_{\rm AC}}\{M'\}=M' \times K_{\rm AC}$, $S=E_{K_{\rm BC}}\{M'\}= M' \times K_{\rm BC}$, ${\rm det}(M')$ is the determinant of $M'$.