logo

SCIENCE CHINA Information Sciences, Volume 59 , Issue 7 : 072203(2016) https://doi.org/10.1007/s11432-016-5573-1

Minimum sliding mode error feedback control for inner-formation satellite system with ${J}_2$ and small eccentricity

More info
  • ReceivedJul 29, 2015
  • AcceptedAug 23, 2015
  • PublishedJun 13, 2016

Abstract


Funded by

National Natural Science Foundation of China(61503414)

State Key Laboratory of Astronautic Dynamics Foundation(ADL)

(2016ADL-DW0202)


Acknowledgment

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 61503414) and State Key Laboratory of Astronautic Dynamics Foundation (ADL) (Grant No. 2016ADL-DW0202).


References

[1] Neeck S P, Magner T J, Paules G E. NASA's small satellite missions for earth observation. Acta Astronaut, 2005, 56: 187-192 CrossRef Google Scholar

[2] Folta D, Bristow J, Hawkins A, et al. NASA's autonomous formation flying technology demonstration, earth observing-1. In: Proceedings of the 1st International Symposium on Formation Flying Missions and Technologies, Toulouse, 2002. Google Scholar

[3] Cabeza I, Maetinez A. Smart-2: an ESA mission to demonstrate the Key technologies for formation flying and drag-free control. In: Proceedings of the 1st International Symposium on Formation Flying Missions and Technologies, Toulouse, 2002. Google Scholar

[4] Kristiansen R, Nicklasson P J. Spacecraft formation flying: a review and new results on state feedback control. Acta Astronaut, 2009, 65: 1537-1552 CrossRef Google Scholar

[5] Bauer F, Bristow J, Carpenter J, et al. Enabling spacecraft formation flying in any earth orbit through spaceborne GPS and enhanced autonomy technologies. Space Technol, 2001, 20: 175-185 Google Scholar

[6] Wang Z K, Zhang Y L. A novel concept of satellite gravity field measurement system using precision formation flying technology. In: Proceedings of the 3rd CSA-IAA Conference on Advanced Space Systems and Applications-Satellite Applications and Applied Satellites, Shanghai, 2008. 1235--1240. Google Scholar

[7] Wang Z K, Zhang Y L. Acquirement of pure gravity orbit using precision formation flying technology. In: Proceedings of the 6th Internet Workshop on Satellite Constellation and Formation Flying, Taipei, 2010. 1135--1140. Google Scholar

[8] Dang Z H, Zhang Y L. Formation control using $\mu$-synthesis for inner-formation gravity measurement satellite system. Adv Space Res, 2012, 49: 1487-1505 CrossRef Google Scholar

[9] Seeber G. Satellite Geodesy. 2nd completely revised and extended edition. Berlin/New York: Walter de Gruyter, 2003. Google Scholar

[10] Hill G. Researches in the lunar theory. Amer J Math, 1878, 1: 5-26 CrossRef Google Scholar

[11] Clohessy W H, Wiltshire R S. Terminal guidance system for satellite rendezvous. J Aerosp Sci, 1960, 27: 653-658 CrossRef Google Scholar

[12] Kechichian J A. Motion in general elliptic orbit with respect to a dragging and processing coordinate frame. J Astronaut Sci, 1998, 46: 25-45 Google Scholar

[13] Sedwick R J, Miller D W, Kong E M C. Mitigation of differential perturbations in clusters of formation flying satellites. AAS/AIAA Space Flight Mechanics Meeting, 1999. AAS Paper: 99-124. Google Scholar

[14] Alfriend K, Schaub H, Gim D. Gravitational perturbations, nonlinearity and circular orbit assumption effects on formation flying control strategies. Rocky Mountain Conference, 2000. AAS Paper: 00-12. Google Scholar

[15] Gim D, Alfriend K. The state transition matrix of relative motion for the perturbed non-circular reference orbit. AAS/AIAA Space Flight Mechanics Meeting, 2001. AAS Paper: 01-222. Google Scholar

[16] Schaub H, Alfriend K T. J2 invariant relative orbits for formation flying. Celest Mech Dynam Astron, 2001, 79: 77-95 CrossRef Google Scholar

[17] Schweighart S A, Sedwick R J. High fidelity linearized J2 model for satellite formation flight. J Guid Control Dynam, 2002, 25: 1073-1080 CrossRef Google Scholar

[18] Utkin V I. Variable structure system with sliding modes. IEEE Trans Automat Contr, 1977, 22: 212-222 CrossRef Google Scholar

[19] Cao L, Chen X Q, Misra A K. Minimum sliding mode error feedback control for fault tolerant reconfigurable satellite formations with J2 perturbations. Acta Astronaut, 2014, 96: 201-216 CrossRef Google Scholar

[20] Massey T, Shtessel Y. Continuous traditional and high-order sliding modes for satellite formation on control. J Guid Control Dynam, 2005, 28: 826-831 CrossRef Google Scholar

[21] Cao L, Chen X Q, Sheng T. Fault tolerant small satellite attitude control using adaptive non-singular terminal sliding mode. Adv Space Res, 2013, 51: 2374-2393 CrossRef Google Scholar

[22] Schaub H, Junkins L. Analytical Mechanics of Space Systems. Reston: American Institute of Aeronautics and Astronautics, 2003. Google Scholar

[23] Francis B. Satellite formation maintenance using differential atmospheric drag. Thesis. McGill University, Montreal. 2011. Google Scholar

[24] Sabatini M, Palmerini G B. Linearized formation-flying dynamics in a perturbed orbital environment. In: 2008 IEEE Aerospace Conference, Big Sky, 2008. 1310--1321. Google Scholar

[25] Godard , Kumar K D. Fault tolerant reconfigurable satellite formations using adaptive variable structure techniques. J Guid Control Dynam, 2010, 33: 969-984 CrossRef Google Scholar

qqqq

Contact and support