SCIENCE CHINA Information Sciences, Volume 59 , Issue 12 : 122306(2016) https://doi.org/10.1007/s11432-016-5570-4

Multiple hypothesis tracking based on the Shiryayev sequential probability ratio test

More info
  • ReceivedOct 3, 2015
  • AcceptedJan 5, 2016
  • PublishedJun 27, 2016



National Natural Science Foundation of China(61471019)

National Natural Science Foundation of China(61501011)



This work was supported by National Natural Science Foundation of China (Grant Nos. 61471019, 61501011).


[1] Chavali P, Nehorai A. Concurrent particle filtering and data association using game theory for tracking multiple maneuvering targets. IEEE Trans Signal Proc, 2013, 614934-4948 CrossRef Google Scholar

[2] Taek S L, Dong L G. A probabilistic nearest neighbor filter algorithm for m validated measurements. IEEE Trans Signal Proc, 2006, 542797-2802 CrossRef Google Scholar

[3] Frank A, Smyth P, Ihler A. Beyond MAP estimation with the track-oriented multiple hypothesis tracker. IEEE Trans Signal Proc, 2014, 622413-2423 CrossRef Google Scholar

[4] Sittler R W. An optimal data association problem in surveillance theory. IEEE Trans Mil Electron, 1964, 8125-139 CrossRef Google Scholar

[5] Stein J J, Blackman S S. Generalized correlation of multitarget track data. IEEE Trans Aerosp Electron Syst, 1975, 111207-1217 Google Scholar

[6] Niu R, Varshney P K. Sampling schemes for sequential detection with dependent observations. IEEE Trans Signal Proc, 2010, 581469-1481 CrossRef Google Scholar

[7] Suratman F Y, Zoubir A M. Bootstrap based sequential probability ratio tests. In: Proceedings of IEEE International Conference on Acoustics, Speech, Signal Process (ICASSP'13), Vancouver, 2013. 6352--6356. Google Scholar

[8] Demos G C, Ribas R A, Broida T J, et al. Applications of MHT to dim moving targets. In: Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Los Angeles, 1990. 297--309. Google Scholar

[9] Reid D B. An algorithm for tracking multiple targets. IEEE Trans Automat Contr, 1979, 24843-854 CrossRef Google Scholar

[10] Blackman S S. Multiple hypothesis tracking for multiple target tracking. IEEE Aerosp Electron Syst, 2004, 195-18 CrossRef Google Scholar

[11] Bar-Shalom Y, Blackman S S, Fitzgerald R J. Dimensionless score function for multiple hypothesis tracking. IEEE Trans Aerosp Electron Syst, 2007, 43392-400 CrossRef Google Scholar

[12] Ren X Y, Luo T J, Huang Z P, et al. An efficient MHT implementation using GRASP. IEEE Trans Aerosp Electron Syst, 2014, 5086-101 CrossRef Google Scholar

[13] Blackman S S, Popoli R. Design and Analysis of Modern Tracking Systems. London: Artech House, 1999. Google Scholar

[14] Shiryayev A N. Optimal Stopping Rules. New York: Springer-Verlag, 1977. Google Scholar

[15] Malladi D P, Speyer J L. A generalized Shiryaev sequential probability ratio test for change detection and isolation. IEEE Trans Automat Contr, 1999, 441522-1534 CrossRef Google Scholar

[16] Ru J, Jilkov V P, Li X R, et al. Detection of target maneuver onset. IEEE Trans Aerosp Electron Syst, 2009, 45536-554 CrossRef Google Scholar

[17] Yu L, Li X R. Sequential multiple-model detection of target maneuver termination. In: Proceedings of the 14th International Conference on Information Fusion (FUSION), Chicago, 2011. 1--8. Google Scholar

[18] Blanding W R, Willett P K, Bar-Shalom Y, et al. Multisensor track management for targets with fluctuating SNR. IEEE Trans Aerosp Electron Syst, 2009, 451275-1292 CrossRef Google Scholar

[19] Wang H, Sun J P, Lu S T, et al. Factor graph aided multiple hypothesis tracking. Sci China Inf Sci, 2013, 56109301-1292 Google Scholar

[20] Schuhmacher D, Vo B T, Vo B N. A consistent metric for performance evaluation of multiobject filters. IEEE Trans Signal Proc, 2008, 563447-3457 CrossRef Google Scholar


Contact and support