SCIENCE CHINA Information Sciences, Volume 59 , Issue 12 : 122306(2016) https://doi.org/10.1007/s11432-016-5570-4

Multiple hypothesis tracking based on the Shiryayev sequential probability ratio test

More info
  • ReceivedOct 3, 2015
  • AcceptedJan 5, 2016
  • PublishedJun 27, 2016


Funded by

National Natural Science Foundation of China(61471019)

National Natural Science Foundation of China(61501011)



This work was supported by National Natural Science Foundation of China (Grant Nos. 61471019, 61501011).


[1] Chavali P, Nehorai A. Concurrent particle filtering and data association using game theory for tracking multiple maneuvering targets. IEEE Trans Signal Proc, 2013, 61: 4934-4948 CrossRef Google Scholar

[2] Taek S L, Dong L G. A probabilistic nearest neighbor filter algorithm for m validated measurements. IEEE Trans Signal Proc, 2006, 54: 2797-2802 CrossRef Google Scholar

[3] Frank A, Smyth P, Ihler A. Beyond MAP estimation with the track-oriented multiple hypothesis tracker. IEEE Trans Signal Proc, 2014, 62: 2413-2423 CrossRef Google Scholar

[4] Sittler R W. An optimal data association problem in surveillance theory. IEEE Trans Mil Electron, 1964, 8: 125-139 CrossRef Google Scholar

[5] Stein J J, Blackman S S. Generalized correlation of multitarget track data. IEEE Trans Aerosp Electron Syst, 1975, 11: 1207-1217 Google Scholar

[6] Niu R, Varshney P K. Sampling schemes for sequential detection with dependent observations. IEEE Trans Signal Proc, 2010, 58: 1469-1481 CrossRef Google Scholar

[7] Suratman F Y, Zoubir A M. Bootstrap based sequential probability ratio tests. In: Proceedings of IEEE International Conference on Acoustics, Speech, Signal Process (ICASSP'13), Vancouver, 2013. 6352--6356. Google Scholar

[8] Demos G C, Ribas R A, Broida T J, et al. Applications of MHT to dim moving targets. In: Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Los Angeles, 1990. 297--309. Google Scholar

[9] Reid D B. An algorithm for tracking multiple targets. IEEE Trans Automat Contr, 1979, 24: 843-854 CrossRef Google Scholar

[10] Blackman S S. Multiple hypothesis tracking for multiple target tracking. IEEE Aerosp Electron Syst, 2004, 19: 5-18 CrossRef Google Scholar

[11] Bar-Shalom Y, Blackman S S, Fitzgerald R J. Dimensionless score function for multiple hypothesis tracking. IEEE Trans Aerosp Electron Syst, 2007, 43: 392-400 CrossRef Google Scholar

[12] Ren X Y, Luo T J, Huang Z P, et al. An efficient MHT implementation using GRASP. IEEE Trans Aerosp Electron Syst, 2014, 50: 86-101 CrossRef Google Scholar

[13] Blackman S S, Popoli R. Design and Analysis of Modern Tracking Systems. London: Artech House, 1999. Google Scholar

[14] Shiryayev A N. Optimal Stopping Rules. New York: Springer-Verlag, 1977. Google Scholar

[15] Malladi D P, Speyer J L. A generalized Shiryaev sequential probability ratio test for change detection and isolation. IEEE Trans Automat Contr, 1999, 44: 1522-1534 CrossRef Google Scholar

[16] Ru J, Jilkov V P, Li X R, et al. Detection of target maneuver onset. IEEE Trans Aerosp Electron Syst, 2009, 45: 536-554 CrossRef Google Scholar

[17] Yu L, Li X R. Sequential multiple-model detection of target maneuver termination. In: Proceedings of the 14th International Conference on Information Fusion (FUSION), Chicago, 2011. 1--8. Google Scholar

[18] Blanding W R, Willett P K, Bar-Shalom Y, et al. Multisensor track management for targets with fluctuating SNR. IEEE Trans Aerosp Electron Syst, 2009, 45: 1275-1292 CrossRef Google Scholar

[19] Wang H, Sun J P, Lu S T, et al. Factor graph aided multiple hypothesis tracking. Sci China Inf Sci, 2013, 56: 109301-1292 Google Scholar

[20] Schuhmacher D, Vo B T, Vo B N. A consistent metric for performance evaluation of multiobject filters. IEEE Trans Signal Proc, 2008, 56: 3447-3457 CrossRef Google Scholar