logo

SCIENCE CHINA Information Sciences, Volume 59 , Issue 6 : 061403(2016) https://doi.org/10.1007/s11432-016-5566-0

3D resistive RAM cell design for high-density storage class memory---a review

More info
  • ReceivedDec 3, 2015
  • AcceptedJan 18, 2016
  • PublishedMay 9, 2016

Abstract


Funded by

Winbond Electronics Corp. and VEGA Project 2/0138/2014. Boris HUDEC acknowledges the financial support of the International Visegrad Fund. Tuo-Hung HOU acknowledges support in part by NCTU- UCB I-RiCE Program(Grant MOST 105-2911-I-009-301)

Ministry of Science and Technology of Taiwan(Grant NSC 102-2221-E-009-188-MY3)


Acknowledgment

Acknowledgments

This work was supported by Ministry of Science and Technology of Taiwan (Grant NSC 102-2221-E-009-188-MY3), Winbond Electronics Corp. and VEGA Project 2/0138/2014. Boris HUDEC acknowledges the financial support of the International Visegrad Fund. Tuo-Hung HOU acknowledges support in part by NCTU- UCB I-RiCE Program (Grant MOST 105-2911-I-009-301).


References

[1] {The digital universe of opportunities: rich data and the increasing value of the Internet of Things.} http://www.\linebreak emc.com/leadership/digital-universe/2014iview/executive-summary.htm. Google Scholar

[2] IBM. IBM details next generation of storage innovation. http://www-03.ibm.com/press/us/en/pressrelease/2020-\linebreak 9.wss. Google Scholar

[3] Burr G W, Kurdi B N, Scott J C, et al. IBM J Res Dev, 2008, 52: 449-464 Google Scholar

[4] Burr G W, Shenoy R S, Virwani K, et al. J Vac Sci Technol B, 2014, 32: 040802-464 Google Scholar

[5] Hwang C S. Adv Electron Mater, 2015, 1: 1400056-464 Google Scholar

[6] Kgil T, Roberts D, Mudge T. Improving NAND flash based disk caches. {In:} {Proceedings of 35th International Symposium on Computer Architecture}, Beijing, 2008. 327--338. Google Scholar

[7] Tanaka H, Kido M, Yahashi K, et al. Bit cost scalable technology with punch and plug processfor ultra high density flash memory. {In: Proceedings of IEEE Symposium on VLSI Technology}, Kyoto, 2007. 14--15. Google Scholar

[8] Nitayama A, Aochi H. Bit cost scalable (BiCS) technology for future ultra high density storage memories. {In: Proceedings of IEEE Symposium on VLSI Technology}, Kyoto, 2013. T61--T62. Google Scholar

[9] Park K T, Han J M, Kim D, et al. Three-dimensional 128Gb MLC vertical NAND flash-memory with 24-WL stacked layers and 50MB/s high-speed programming. {In: Digest of Technical Papers of 2014 IEEE International Solid-State Circuits Conference}, San Francisco, 2014. 334--335. Google Scholar

[10] Wang K L, Alzate J G, Amiri P K. J Phys D Appl Phys, 2013, 46: 074003-464 Google Scholar

[11] Kim C, Kwon K, Park C, et al. A covalent-bonded cross-coupled current-mode sense amplifier for STT-MRAM with 1T1MTJ common source-line structure array. {In: Digest of Technical Papers of 2015 IEEE International Solid-State Circuits Conference}, San Francisco, 2015. 134--135. Google Scholar

[12] Noguchi H, Ikegami K, Kushida K, et al. A 3.3ns-access-time 71.2$\upmu $W/MHz 1Mb embedded STT-MRAM using physically eliminated read-disturb scheme and normally-off memory architecture. {In: Digest of Technical Papers of 2015 IEEE International Solid-State Circuits Conference}, San Francisco, 2015. 136--137. Google Scholar

[13] Yamada J, Miwa T, Koike H, et al. A 128 kb FeRAM macro for a contact/contactless smart card microcontroller. {In: Digest of Technical Papers of 2000 IEEE International Solid-State Circuits Conference}, San Francisco, 2000. 270--271. Google Scholar

[14] Müller J, Böscke T S, Müller S, et al. Ferroelectric hafnium oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories. {In: Proceedings of 2013 IEEE International Electron Devices Meeting}, Washington DC, 2013. 280--283. Google Scholar

[15] Waser R, Aono M. Nat Mater, 2007, 6: 833-840 Google Scholar

[16] Govoreanu B, Kar G S, Chen Y Y, et al. $10\times10$ nm$^{2}$ Hf/HfO$_{x}$ cross-bar resistive RAM with excellent performance, reliability and low-energy operation. {In: Proceedings of 2011 IEEE International Electron Devices Meeting}, Washington DC, 2011. 729--732. Google Scholar

[17] Wu M C, Lin Y W, Tseng T Y. Electron Dev Lett, 2011, 32: 1026-1028 Google Scholar

[18] Lee H Y, Chen P S, Wu T Y, et al. Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO$_{2}$-based RRAM. {In: Proceedings of 2008 IEEE International Electron Devices Meeting}, San Francisco, 2008. 297--300. Google Scholar

[19] Lee M J, Lee C B, Lee D, et al. Nat Mater, 2010, 10: 625-630 Google Scholar

[20] Sawa A. Resistive switching in transition metal oxides, {Mater Today}, 2008, 11: 28--36. Google Scholar

[21] Waser R, Dittmann R, Staikov G, et al. Adv Mat, 2009, 21: 2632-2663 Google Scholar

[22] Zhuge F, Li K, Fu B, et al. AIP Adv, 2015, 5: 057125-2663 Google Scholar

[23] Wedig A, Luebben M, Cho D Y, et al. Nat Nanotechnol, 2016, 11: 67-74 Google Scholar

[24] Ahn S E, Lee M J, Park Y, et al. Adv Mater, 2008, 20: 924-928 Google Scholar

[25] Kwon D H, Kim K M, Jang J H, et al. Nat Nanotech, 2010, 5: 148-153 Google Scholar

[26] Burr G W, Breitwisch M J, Franceschini M, et al. J Vac Sci Technol B, 2010, 28: 223-262 Google Scholar

[27] Deringer V L, Dronskowski R, Wuttig M. Adv Funct Mat, 2015, 25: 6343-6359 Google Scholar

[28] Lam C H. Phase Change Memory and its intended applications. {In: Proceedings of 2014 IEEE International Electron Devices Meeting}, San Francisco, 2014. 29.3.1--29.3.4. Google Scholar

[29] Stanisavljevic M, Athmanathan A, Papandreou N, et al. Phase-change memory: feasibility of reliable multilevel-cell storage and retention at elevated temperatures. {In: Proceedings of 2015 IEEE International Reliability Physics Symposium (IRPS)}, Monterey, 2015. 5B.6.1--5B.6.6. Google Scholar

[30] Edwards A H, Barnaby H J, Campbell K A, et al. Proc IEEE, 2015, 103: 1004-1033 Google Scholar

[31] Lee J S, Lee S, Noh T W. Appl Phys Rev, 2015, 2: 031303-1033 Google Scholar

[32] Menzel S, Böttger U, Wimmer M, et al. Adv Funct Mat, 2015, 25: 6306-6325 Google Scholar

[33] Chen F T, Lee H Y, Chen Y S, et al. Sci China Inf Sci, 2011, 54: 1073-1086 Google Scholar

[34] Sheu S S, Chiang P C, Lin W P, et al. A 5 ns fast write multi-level non-volatile 1 Kbits RRAM memory with advance write scheme. {In: Proceedings of 2009 Symposium on VLSI Circuits}, Kyoto, 2009. 82--83. Google Scholar

[35] Wang C H, Tsai Y H, Lin K C, et al. Three-dimensional $4F^{2}$ ReRAM cell with CMOS logic compatible process. {In: Proceedings of 2010 IEEE International Electron Devices Meeting}, San Francisco, 2010. 664--667. Google Scholar

[36] Grossi A, Zambelli C, Olivo P, et al. Electrical characterization and modeling of pulse-based forming techniques in RRAM arrays. {Solid-State Electron} 2016, 115: 17--25. Google Scholar

[37] Linn E, Rosezin R, Kugeler C, Waser R. Nat Mater, 2010, 9: 403-406 Google Scholar

[38] Huang C H, Huang J S, Lin S M, et al. ACS Nano, 2012, 6: 8407-8414 Google Scholar

[39] Huang J J, Tseng Y M, Hsu C W, et al. Electron Dev Lett, 2011, 32: 1427-1429 Google Scholar

[40] Deng Y X, Chen H Y, Gao B, et al. Design and optimization methodology for 3D RRAM arrays. {In: Proceedings of 2013 IEEE International Electron Devices Meeting}, Washington DC, 2013. 25.7.1--25.7.4. Google Scholar

[41] Tseng Y H, Huang C-E, Kuo C-H, et al. High density and ultra small cell size of Contact ReRAM (CR-RAM) in 90nm CMOS logic technology and circuits. {In: Proceedings of 2009 IEEE International Electron Devices Meeting}, Baltimore, 2009. 109--112. Google Scholar

[42] Sheu S-S, Chiang P-C, Lin W-P, et al. A 5ns fast write multi-level non-volatile 1 K bits RRAM memory with advance write scheme. {In: Proceedings of 2009 Symposium on VLSI Circuits}, Kyoto, 2009. 82--83. Google Scholar

[43] Wei Z, Kanzawa Y, Arita K, et al. Highly reliable TaO$_x$ ReRAM and direct evidence of redox reaction mechanism. In: Proceedings of 2008 IEEE International Electron Devices Meeting, San Francisco, 2008. 1--4. Google Scholar

[44] Wang X P, Fang Z, Li X, et al. Highly compact 1T-1R architecture ($4F^{2}$ footprint) involving fully CMOS compatible vertical GAA nano-pillar transistors and oxide-based RRAM cells exhibiting excellent NVM properties and ultra-low power operation. {In: Proceedings of 2012 IEEE International Electron Devices Meeting}, San Francisco, 2012. 20.6.1--20.6.4. Google Scholar

[45] Yasuhara R, Ninomiya T, Muraoka S, et al. Consideration of conductive filament for realization of low-current and highly-reliable TaO$_x$ ReRAM. {In: Proceedings of 2013 5th IEEE International Memory Workshop (IMW)}, Monterey, 2013. 34--37. Google Scholar

[46] Zahurak J, Miyata K, Fischer M, et al. Process integration of a 27nm, 16Gb Cu ReRAM. {In: Proceedings of 2014 IEEE International Electron Devices Meeting}, San Francisco, 2014. 140--143. Google Scholar

[47] Kau D C, Tang S, Karpov I V, et al. A stackable cross point phase change memory. {In: Proceedings of 2009 IEEE International Electron Devices Meeting}, Baltimore, 2009. 617--620. Google Scholar

[48] Tran X A, Gao B, Kang J F, et al. High performance unipolar AlO$_{y}$/HfO$_{x}$/Ni based RRAM compatible with Si diodes for 3D application. {In: Proceedings of IEEE Symposium on VLSI Technology}, Kyoto, 2011. 44--45. Google Scholar

[49] Kang M J, Park T J, Kwon Y W, et al. PRAM cell technology and characterization in 20nm node size. {In: Proceedings of 2011 IEEE International Electron Devices Meeting}, Washington DC, 2011. 39--42. Google Scholar

[50] Choi Y, Song I, Park M-H, et al. A 20nm 1.8V 8Gb PRAM with 40MB/s program bandwidth. {In: Digest of Technical Papers of 2012 IEEE International Solid-State Circuits Conference}, San Francisco, 2012. 46--47. Google Scholar

[51] Lee M J, Park Y, Kang B S, et al. 2-stack 1D-1R coss-point structure with oxide diodes as switch elements for high density resistance RAM applications. {In: Proceedings of 2007 IEEE International Electron Devices Meeting}, Washington DC, 2007. 771--774. Google Scholar

[52] Lee M J, Seo S, Kim D C, et al. Adv Mater, 2007, 19: 73-76 Google Scholar

[53] Huang J J, Kuo C W, Chang W C, et al. Appl Phys Lett, 2010, 96: 262901-76 Google Scholar

[54] Govoreanu B, Zhang L, Crotti D, et al. Thin-Silicon Injector (TSI): an all-silicon engineered barrier, highly nonlinear selector for high density resistive RAM applications. {In: Proceedings of 2015 IEEE International Memory Workshop (IMW)}, Monterey, 2015. 1--4. Google Scholar

[55] Sasago Y, Kinoshita M, Morikawa T, et al. Cross-point phase change memory with $4F^{2}$ cell size driven by low-contact-resistivity poly-Si diode. {In: Proceedings of IEEE Symposium on VLSI Technology}, Kyoto, 2009. 24--25. Google Scholar

[56] Cha E, Woo J, Lee D, et al. Selector devices for 3-D cross-point ReRAM. {In: Proceedings of International Symposium on Circuits and Systems (ISCAS)}, Melbourne VIC, 2014. 428--431. Google Scholar

[57] Choi B J, Zhang J M, Norris K, et al. Adv Mater, 2016, 28: 356-362 Google Scholar

[58] Kim G H, Lee J H, Ahn Y, et al. Adv Funct Mat, 2013, 23: 1440-1449 Google Scholar

[59] Huang J-J, Tseng Y-M, Luo W-C, et al. One selector-one resistor (1S1R) crossbar array for high-density flexible memory applications. {In: Proceedings of 2011 IEEE International Electron Devices Meeting}, Washington DC, 2011. 733--736. Google Scholar

[60] Kim S, Liu X, Park J, et al. Ultrathin (<10 nm) Nb$_{2}$O$_{5}$/NbO$_{2}$ hybrid memory with both memory and selector characteristics for high density 3D vertically stackable RRAM applications. {In: Proceedings of IEEE Symposium on VLSI Technology}, Honolulu, 2012. 155--156. Google Scholar

[61] Lee H D, Kim S G, Cho K, et al. Integration of 4F2 selector-less crossbar array 2Mb ReRAM based on transition metal oxides for high density memory applications. {In: Proceedings of IEEE Symposium on VLSI Technology}, Honolulu, 2012. 151--152. Google Scholar

[62] Kim W G, Lee H M, Kim B Y, et al. NbO$_{2}$-based low power and cost effective 1S1R switching for high density cross point ReRAM application. {In: Proceedings of IEEE Symposium on VLSI Technology}, Honolulu, 2014. 1--2. Google Scholar

[63] Lee S, Lee D, Woo J, et al. Selector-less ReRAM with an excellent non-linearity and reliability by the band-gap engineered multi-layer titanium oxide and triangular shaped AC pulse. {In: Proceedings of 2013 IEEE International Electron Devices Meeting}, Washington DC, 2013. 272--275. Google Scholar

[64] Jo S H, Kumar T, Narayanan S, et al. 3D-stackable crossbar resistive memory based on field assisted superlinear threshold (FAST) selector. {In: Proceedings of 2014 IEEE International Electron Devices Meeting}, San Francisco, 2014. 160--163. Google Scholar

[65] Seok J Y, Song S J, Yoon J H, et al. Adv Funct Mat, 2014, 24: 5316-5339 Google Scholar

[66] Baek I G, Park C J, Ju H, et al. Realization of vertical resistive memory (VRRAM) using cost effective 3D process. {In: Proceedings of 2011 IEEE International Electron Devices Meeting (IEDM)}, Washington DC, 2011. 31.8.1--31.8.4. Google Scholar

[67] Yoon H S, Baek I-G, Zhao J, et al. Vertical cross-point resistance change memory for ultra-high density non-volatile memory applications. {In: Proceedings of IEEE Symposium on VLSI Technology}, Kyoto, 2009. 26--27. Google Scholar

[68] Zhang L Q, Cosemans S, Wouters D J, et al. Analysis of vertical cross-point resistive memory (VRRAM) for 3D RRAM design. {In: Proceedings of 2013 5th IEEE International Memory Workshop}, Monterey, 2013. 155--158. Google Scholar

[69] Xu C, Niu D, Yu S, Xie Y. Modeling and design analysis of 3D vertical resistive memory---a low cost cross-point architecture. {In: Proceedings of 19th Asia and South Pacific Design Automation Conference (ASP-DAC)}, Singapore, 2014. 825--830. Google Scholar

[70] Chevallier C J, Siau C H, Lim S F, et al. A 0.13$\upmu $m 64Mb multi-layered conductive metal-oxide memory. {In: Digest of Technical Papers of 2010 IEEE International Solid-State Circuits Conference}, San Francisco, 2010. 260--261. Google Scholar

[71] Meyer R, Schloss L, Brewer J, et al. Oxide dual-layer memory element for scalable non-volatile cross-point memory technology. {In: Proceedings of 9th Annual Non-Volatile Memory Technology Symposium (NVMT)}, Pacific Grove, 2008. 1--5. Google Scholar

[72] Kawahara A, Azuma R, Ikeda Y, et al. An 8Mb multi-layered cross-point ReRAM macro with 443MB/s write throughput. In: Proceedings of 2012 IEEE International Solid-State Circuits Conference, San Francisco, 2012. 432--434. Google Scholar

[73] Liu T-Z, Yan T H, Scheuerlein R, et al. A 130.7mm$^{2}$ 2-layer 32Gb ReRAM memory device in 24nm technology. {In: Digest of Technical Papers of 2013 IEEE International Solid-State Circuits Conference}, San Francisco, 2013. 210--211. Google Scholar

[74] Intel and Micron Produce Breakthrough Memory Technology. http://newsroom.intel.com/community/intel{\_}news-\linebreak room/blog/ 2015/07/28/intel-and-micron-produce-breakthrough-memory-technology. Google Scholar

[75] Chin Y-W, Chen S-E, Hsieh M-C, et al. Point twin-bit RRAM in 3D interweaved cross-point array by Cu BEOL process. {In: Proceedings of 2014 IEEE International Electron Devices Meeting}, San Francisco, 2014. 148--151. Google Scholar

[76] Chien W C, Lee F M, Lin Y Y, et al. Multi-layer sidewall WO$_{X}$ resistive memory suitable for 3D ReRAM. {In: Proceedings of 2012 Symposium on VLSI Technology (VLSIT)}, Honolulu, 2012. 153--154. Google Scholar

[77] Chen H-Y, Yu S M, Gao B, et al. HfO$_x$ based vertical resistive random access memory for cost-effective 3D cross-point architecture without cell selector. {In: Proceedings of 2012 IEEE International Electron Devices Meeting}, San Francisco, 2012. 497--500. Google Scholar

[78] Yu S M, Chen H-Y, Gao B, et al. ACS Nano, 2013, 7: 2320-2325 Google Scholar

[79] Yu S M, Chen H-Y, Deng Y, et al. 3D Vertical RRAM---scaling limit analysis and demonstration of 3D array operation.{ In: Proceedings of IEEE Symposium on VLSI Technology}, Kyoto, 2013. T158--T159. Google Scholar

[80] Sohn J, Lee S, Jiang Z, et al. Atomically thin graphene plane electrode for 3D RRAM. {In: Proceedings of 2014 IEEE International Electron Devices Meeting}, San Francisco, 2014. 116--119. Google Scholar

[81] Zhao L, Jiang Z, Chen H-Y, et al. Ultrathin ($\sim2$ nm) HfO$_{x}$ as the fundamental resistive switching element: thickness scaling limit, stack engineering and 3D Integration. {In: Proceedings of 2014 IEEE International Electron Devices Meeting}, San Francisco, 2014. 156--159. Google Scholar

[82] Gao B, Chen B, Liu R, et al. IEEE Trans Electron Dev, 2014, 61: 1377-1381 Google Scholar

[83] Bai Y, Wu H Q, Wu R, et al. Sci Rep, 2014, 4: 5780-1381 Google Scholar

[84] Hudec B, Wang I-T, Lai W-L, et al. J Phys D Appl Phys, 2016, 49: 215102-1381 Google Scholar

[85] Jan\v{c}ovi\v{c}, Hudec B, Dobro\v{c}ka E, et al. Resistive switching in HfO$_{2}$-based atomic layer deposition grown metal-insulator-metal structures. {Appl Surf Sci}, 2014. 312: 112--116. Google Scholar

[86] Butcher B, Bersuker G, Young-Fischer K G, et al. Hot forming to improve memory window and uniformity of low-power HfO$_{x}$ based RRAMs. {In: Proceedings of 2012 4th IEEE International Memory Workshop}, Milan, 2012. 1--4. Google Scholar

[87] Kalantarian A, Bersuker G, Gilmer D C, et al. Controlling uniformity of RRAM characteristics through the forming process. {In: Proceedings of 2012 IEEE International Reliability Physics Symposium (IRPS)}, Anaheim, 2012. 6C.4.1--6C.4.5. Google Scholar

[88] Walczyk D, Walczyk Ch, Schroeder T, et al. Microelectron Eng, 2011, 88: 1133-1135 Google Scholar

[89] Yang J J, Zhang M-X, Pickett M D, et al. Appl Phys Lett, 2012, 100: 113501-1135 Google Scholar

[90] Park S-G, Yang M K, Ju H, et al. A non-linear ReRAM cell with sub-1$\upmu $A ultralow operating current for high density vertical resistive memory (VRRAM). {In: Proceedings of 2012 IEEE International Electron Devices Meeting}, San Francisco, 2012. 501--504. Google Scholar

[91] Govoreanu B, Redolfi A, Zhang L, et al. Vacancy-modulated conductive oxide resistive ram (VCMO-RRAM): an area-scalable switching current, self-compliant, highly nonlinear and wide on/off-window resistive switching cell. {In: Proceedings of 2013 IEEE International Electron Devices Meeting}, Washington DC, 2013. 256--259. Google Scholar

[92] Chen Y-S, Lee H-Y, Chen P-S, et al. IEEE Electron Dev Lett, 2014, 35: 202-204 Google Scholar

[93] Yoon J H, Kim K M, Song S J, et al. Adv Mater, 2015, 27: 3811-3816 Google Scholar

[94] Yoon J H, Song S J, Yoo I-H, et al. Adv Funct Mater, 2014, 24: 5086-5095 Google Scholar

[95] Hsu C-W, Wang I-T, Lo C-L, et al. Self-rectifying bipolar TaO$_{x}$/TiO$_{2}$ RRAM with superior endurance over 10$^{12}$ cycles for 3D high-density storage-class memory. {In: Proceedings of IEEE Symposium on VLSI Technology}, Kyoto, 2013. T166--T167. Google Scholar

[96] Hsu C-W, Wan C-C, Wang I-T, et al. 3D vertical TaO$_{x}$/TiO$_{2}$ RRAM with over 10$^{3}$ self-rectifying ratio and sub-$\upmu $A operating current.{ In: Proceedings of 2013 IEEE International Electron Devices Meeting}, Washington DC, 2013. 10.4.1--10.4.4. Google Scholar

[97] Hsu C-W, Wang Y-F, Wan C-C, et al. Nanotechnology, 2014, 25: 165202-5095 Google Scholar

[98] Wang Y-F, Lin Y-C, Wang I-T, et al. Sci Rep, 2015, 5: 10150-5095 Google Scholar

[99] Lai W-L, Chou C-T, Hsu C-W, et al. Interface engineering in homogeneous barrier modulation RRAM for 3D vertical memory applications. {In: Proceedings of International Conference on Solid State Devices and Materials, Tsukuba, 2014}. 412--413. Google Scholar

[100] Chou C-T, Hudec B, Hsu C-W, et al. Microelectron Reliab, 2015, 55: 2220-2223 Google Scholar

[101] Kim S, Du C, Sheridan P, et al. Nano Lett, 2015, 15: 2203-2211 Google Scholar

[102] Burr G W, Shelby R M, Sidler S, et al. IEEE Trans Electron Dev, 2015, 62: 3498-3507 Google Scholar

[103] Wang I-T, Lin Y-C, Wang Y-F, et al. 3D synaptic architecture with ultralow sub-10 fJ energy per spike for neuromorphic computation. {In: Proceedings of 2014 IEEE International Electron Devices Meeting}, San Francisco, 2014. 28.5.1--28.5.4. Google Scholar

[104] Gao B, Wang I-T, Chen P-Y, et al. Nanotechnology, 2015, 26: 455204-3507 Google Scholar

[105] Siemon A, Breuer T, Aslam N, et al. Adv Funct Mater, 2015, 25: 6414-6423 Google Scholar