SCIENCE CHINA Information Sciences, Volume 59 , Issue 9 : 092206(2016) https://doi.org/10.1007/s11432-016-5554-4

Feedback control for a class of second order hyperbolic distributed parameter systems

More info
  • ReceivedJun 14, 2015
  • AcceptedSep 30, 2015
  • PublishedAug 23, 2016



National Natural Science Foundation of China(11371013)



This work was supported by National Natural Science Foundation of China (Grant No. 11371013).


[1] Smyshlyaev A, Krstic M. Boundary control of an anti-stable wave equation with anti-damping on the uncontrolled boundary. Syst Control Lett, 2009, 58617-623 CrossRef Google Scholar

[2] Smyshlyaev A, Krstic M. Backstepping observers for a class of parabolic PDEs. Syst Control Lett, 2005, 54613-625 CrossRef Google Scholar

[3] Krstic M, Smyshlyaev A. Adaptive control of PDEs. Ann Rev Control, 2008, 32149-160 CrossRef Google Scholar

[4] Cheng M B, Radisavljevic V, Su W C. Sliding mode boundary control of a parabolic PDE system with parameter variations and boundary uncertainties. Automatica, 2011, 47381-387 CrossRef Google Scholar

[5] Orlov Y. Discontinuous unit feedback control of uncertain infinite-dimensional systems. IEEE Trans Autom Control, 2000, 45834-843 CrossRef Google Scholar

[6] Fu Q. Iterative learning control for second order nonlinear hyperbolic distributed parameter systems (in Chinese). J Syst Sci Math Sci, 2014, 34284-293 Google Scholar

[7] Orlov Y, Pisano A, Usai E. Continuous state-feedback tracking of the uncertain heat diffusion process. Syst Control Lett, 2010, 59754-759 CrossRef Google Scholar

[8] Orlov Y, Pisano A, Usai E. Exponential stabilization of the uncertain wave equation via distributed dynamic input extension. IEEE Trans Autom Control, 2011, 56212-217 CrossRef Google Scholar

[9] Pisano A, Orlov Y, Usai E. Tracking control of the uncertain heat and wave equation via power-fractional and sliding-mode techniques. SIAM J Control Optim, 2011, 49363-382 CrossRef Google Scholar

[10] Orlov Y. Discontinuous Systems Lyapunov Analysis and Robust Synthesis Under Uncertainty Conditions. Berlin: Springer-Verlag, 2009. Google Scholar


Contact and support