logo

SCIENCE CHINA Information Sciences, Volume 59 , Issue 5 : 053201(2016) https://doi.org/10.1007/s11432-016-5553-5

A binocular vision-based UAVs autonomous aerial refueling platform

More info
  • ReceivedJan 28, 2016
  • AcceptedMar 16, 2016
  • PublishedApr 8, 2016

Abstract


Acknowledgment

Acknowledgments

This work was partially supported by National Natural Science Foundation of China (Grant Nos. 61425008, 61333004, 61273054) and Aeronautical Foundation of China (Grant No. 2015ZA51013).


References

[1] Tanner H G. Switched UAV-UGV cooperation scheme for target detection. In: Proceedings of IEEE International Conference on Robotics and Automation, Roma, 2007. 3457-3462. Google Scholar

[2] Wang X H, Duan H B. Sci China Inf Sci, 2014, 57: 112202 Google Scholar

[3] Jakob M, Semsch E, Pavlíček D, et al. Occlusion-aware multi-UAV surveillance of multiple urban areas. In: Proceedigns of the 6th Workshop on Agents in Traffic and Transportation, Toronto, 2010. 59-66. Google Scholar

[4] Duan H B, Qiu H X, Fan Y M. Sci Sin Tech, 2015, 45: 559-572 Google Scholar

[5] Baba Y, Takano H, Miyamoto S, et al. Air combat guidance law for an UCAV. In: Proceedings of the 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles, Portsmouth, 2002. 1-11. Google Scholar

[6] Nalepka J P, Hinchman J L. Automated aerial refueling: extending the effectiveness of unmanned air vehicles. In: Proceedings of Modeling and Simulation Technologies Conference and Exhibit, San Francisco, 2005. 15-18. Google Scholar

[7] Valasek J, Gunnam K, Kimmett J, et al. J Guid Control Dyna, 2005, 28: 979-989 Google Scholar

[8] Chen C I, Stettner R. Drogue tracking using 3D flash lidar for autonomous aerial refueling. Proc SPIE Laser Radar Technology and Applications XVI, 2011, 80370Q. Google Scholar

[9] Yin Y, Xu D, Wang X, et al. Int J Advanced Robot Syst, 2014, 11: 1-12 Google Scholar

[10] Wilson D B, Goktogan A H, Sukkarieh S. Experimental validation of a drogue estimation algorithm for autonomous aerial refueling. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Seattle, 2015. 5318-5323. Google Scholar

[11] Campa G, Fravolini M L, Ficola A, et al. Autonomous aerial refueling for UAVs using a combined GPS-machine vision guidance. In: Proceedings of Guidance, Navigation, and Control Conference and Exhibit, Providence, 2004. 1-11. Google Scholar

[12] Doebbler J, Spaeth T, Valasek J, et al. J Guid Control Dynam, 2007, 30: 1753-1769 Google Scholar

[13] Zhang S J, Cao X B, Zhang F, et al. Sci China Inf Sci, 2010, 53: 1682-1696 Google Scholar

[14] Lei T, Wang Y, Fan Y Y, et al. Sci China Inf Sci, 2013, 56: 1-12 Google Scholar

[15] Zhang W L, Liu L B, Yin S Y, et al. Sci China Inf Sci, 2013, 56: 1-14 Google Scholar

[16] Duan H B, Zhang Q F, Deng Y M, et al. Chinese J Sci Instrum, 2014, 35: 1450-1458 Google Scholar

[17] Kimmett J, Valasek J, Junkins J L. Autonomous aerial refueling utilizing a vision based navigation system. In: Proceedings of the Guidance, Navigation and Control Conference and Exhibit, Monterey, 2002. 1-11. Google Scholar

[18] Lu C P, Hager G D, Mjolsness E. IEEE Trans Pattern Anal Mach Intell, 2000, 22: 610-622 Google Scholar

[19] Chen S Z, Xu H, Liu D K, et al. IEEE Int Things J, 2014, 1: 349-359 Google Scholar

[20] Bouabdallah S, Siegwart R. Full control of a quadrotor. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, 2007. 153-158. Google Scholar

[21] Bouabdallah S, Murrieri P, Siegwart R. Design and control of an indoor micro quadrotor. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA'04), New Orleans, 2004, 5: 4393-4398. Google Scholar

[22] Khatib O. Int J Robot Res, 1986, 5: 90-98 Google Scholar