SCIENCE CHINA Information Sciences, Volume 59 , Issue 5 : 053201(2016) https://doi.org/10.1007/s11432-016-5553-5

A binocular vision-based UAVs autonomous aerial refueling platform

More info
  • ReceivedJan 28, 2016
  • AcceptedMar 16, 2016
  • PublishedApr 8, 2016




This work was partially supported by National Natural Science Foundation of China (Grant Nos. 61425008, 61333004, 61273054) and Aeronautical Foundation of China (Grant No. 2015ZA51013).


[1] Tanner H G. Switched UAV-UGV cooperation scheme for target detection. In: Proceedings of IEEE International Conference on Robotics and Automation, Roma, 2007. 3457-3462. Google Scholar

[2] Wang X H, Duan H B. Sci China Inf Sci, 2014, 57: 112202 Google Scholar

[3] Jakob M, Semsch E, Pavlíček D, et al. Occlusion-aware multi-UAV surveillance of multiple urban areas. In: Proceedigns of the 6th Workshop on Agents in Traffic and Transportation, Toronto, 2010. 59-66. Google Scholar

[4] Duan H B, Qiu H X, Fan Y M. Sci Sin Tech, 2015, 45: 559-572 Google Scholar

[5] Baba Y, Takano H, Miyamoto S, et al. Air combat guidance law for an UCAV. In: Proceedings of the 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles, Portsmouth, 2002. 1-11. Google Scholar

[6] Nalepka J P, Hinchman J L. Automated aerial refueling: extending the effectiveness of unmanned air vehicles. In: Proceedings of Modeling and Simulation Technologies Conference and Exhibit, San Francisco, 2005. 15-18. Google Scholar

[7] Valasek J, Gunnam K, Kimmett J, et al. J Guid Control Dyna, 2005, 28: 979-989 Google Scholar

[8] Chen C I, Stettner R. Drogue tracking using 3D flash lidar for autonomous aerial refueling. Proc SPIE Laser Radar Technology and Applications XVI, 2011, 80370Q. Google Scholar

[9] Yin Y, Xu D, Wang X, et al. Int J Advanced Robot Syst, 2014, 11: 1-12 Google Scholar

[10] Wilson D B, Goktogan A H, Sukkarieh S. Experimental validation of a drogue estimation algorithm for autonomous aerial refueling. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Seattle, 2015. 5318-5323. Google Scholar

[11] Campa G, Fravolini M L, Ficola A, et al. Autonomous aerial refueling for UAVs using a combined GPS-machine vision guidance. In: Proceedings of Guidance, Navigation, and Control Conference and Exhibit, Providence, 2004. 1-11. Google Scholar

[12] Doebbler J, Spaeth T, Valasek J, et al. J Guid Control Dynam, 2007, 30: 1753-1769 Google Scholar

[13] Zhang S J, Cao X B, Zhang F, et al. Sci China Inf Sci, 2010, 53: 1682-1696 Google Scholar

[14] Lei T, Wang Y, Fan Y Y, et al. Sci China Inf Sci, 2013, 56: 1-12 Google Scholar

[15] Zhang W L, Liu L B, Yin S Y, et al. Sci China Inf Sci, 2013, 56: 1-14 Google Scholar

[16] Duan H B, Zhang Q F, Deng Y M, et al. Chinese J Sci Instrum, 2014, 35: 1450-1458 Google Scholar

[17] Kimmett J, Valasek J, Junkins J L. Autonomous aerial refueling utilizing a vision based navigation system. In: Proceedings of the Guidance, Navigation and Control Conference and Exhibit, Monterey, 2002. 1-11. Google Scholar

[18] Lu C P, Hager G D, Mjolsness E. IEEE Trans Pattern Anal Mach Intell, 2000, 22: 610-622 Google Scholar

[19] Chen S Z, Xu H, Liu D K, et al. IEEE Int Things J, 2014, 1: 349-359 Google Scholar

[20] Bouabdallah S, Siegwart R. Full control of a quadrotor. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, 2007. 153-158. Google Scholar

[21] Bouabdallah S, Murrieri P, Siegwart R. Design and control of an indoor micro quadrotor. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA'04), New Orleans, 2004, 5: 4393-4398. Google Scholar

[22] Khatib O. Int J Robot Res, 1986, 5: 90-98 Google Scholar


Contact and support