SCIENCE CHINA Information Sciences, Volume 59 , Issue 12 : 122902(2016) https://doi.org/10.1007/s11432-016-0582-y

Quaternion-based robust trajectory tracking control for uncertain quadrotors

More info
  • ReceivedAug 30, 2016
  • AcceptedSep 28, 2016
  • PublishedNov 2, 2016


Funded by

National High-Tech R&D Program of China(863 Program)


National Natural Science Foundation of China(61503012)



This work was supported by National High-Tech R&D Program of China (863 Program) (Grant No. 2012AA112201) and National Natural Science Foundation of China (Grant No. 61503012).


[1] Hoffmann G M, Huang H, Waslander S L. Precision flight control for a multi-vehicle quadrotor helicopter testbed. Control Eng Pract, 2011, 19: 1023-1036 CrossRef Google Scholar

[2] Sun C H, Duan H B. Markov decision evolutionary game theoretic learning for cooperative sensing of unmanned aerial vehicles. Sci China Technol Sci, 2015, 58: 1392-1400 CrossRef Google Scholar

[3] Tang S, Yang Q H, Qian S K, et al. Height and attitude active disturbance rejection controller design of a small-scale helicopter. Sci China Inf Sci, 2015, 58: 032202-1400 Google Scholar

[4] Alexis K, Nikolakopoulos G, Tzes A. Switching model predictive attitude control for a quadrotor helicopter subject to atmosphere disturbances. Control Eng Pract, 2011, 10: 1195-1207 Google Scholar

[5] Pounds P, Mahony R, Corke P. Modelling and control of a large quadrotor robot. Control Eng Pract, 2010, 18: 691-699 CrossRef Google Scholar

[6] Mahony R, Kumar V, Corke P. Multirotor aerial vehicles: modeling, estimation, and control of quadrotor. IEEE Robot Automat Mag, 2012, 19: 20-32 Google Scholar

[7] Castillo P, Dzul A, Lozano R. Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans Control Syst Technol, 2004, 12: 510-516 CrossRef Google Scholar

[8] Aguilar-Ibanez C, Sira-Ramirez H, Suarez-Castanon S, et al. The trajectory tracking problem for an unmanned four-rotor system: flatness-based approach. Int J Control, 2012, 85: 69-77 CrossRef Google Scholar

[9] Bertrand S, Guenard N, Hamel T, et al. A hierarchical controller for miniature VTOL UAVs: design and stability analysis using singular perturbation theory. Control Eng Pract, 2011, 19: 1099-1108 CrossRef Google Scholar

[10] Besnard L, Shtessel Y B, Landrum B. Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer. J Franklin Inst, 2012, 349: 658-684 CrossRef Google Scholar

[11] Luque-Vega L, Castillo-Toledo B, Loukianov A G. Robust block second order sliding mode control for a quadrotor. J Franklin Inst, 2012, 349: 719-739 CrossRef Google Scholar

[12] Dydek Z T, Annaswamy A M, Lavretsky E. Adaptive control of quadrotor UAVs: a design trade study with flight evaluations. IEEE Trans Control Syst Technol, 2013, 21: 1400-1406 CrossRef Google Scholar

[13] Zuo Z Y. Trajectory tracking control design with command-filtered compensation for a quadrotor. IET Control Theory Appl, 2010, 11: 2343-2355 Google Scholar

[14] Ryan T, Kim H J. LMI-based gain synthesis for simple robust quadrotor control. IEEE Trans Automat Sci Eng, 2013, 10: 1173-1178 CrossRef Google Scholar

[15] Liu H, Li D J, Xi J X, et al. Robust attitude controller design for miniature quadrotors. Int J Robust Nonlinear Control, 2016, 26: 681-696 CrossRef Google Scholar

[16] Liu H, Lu G, Zhong Y S. Robust LQR attitude control of a 3-DOF lab helicopter for aggressive maneuvers. IEEE Trans Ind Electron, 2013, 60: 4627-4636 CrossRef Google Scholar

[17] Tayebi A, McGilvray S. Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans Control Syst Technol, 2006, 14: 562-571 CrossRef Google Scholar

[18] Johnson E N, Kannan S K. Adaptive trajectory control for autonomous helicopters. J Guid Control Dyn, 2005, 28: 524-538 CrossRef Google Scholar

[19] Zhang R, Quan Q, Cai K Y. Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances. IET Control Theory Appl, 2011, 5: 1140-1146 CrossRef Google Scholar

[20] Isidori A, Marconi L, Serrani A. Robust nonlinear motion control of a helicopter. IEEE Trans Automat Control, 2003, 48: 413-426 CrossRef Google Scholar

[21] Guerrero-Castellanos J F, Marchand N, Hably A, et al. Bounded attitude control of rigid bodies: real-time experimentation to a quadrotor mini-helicopter. Control Eng Pract, 2011, 19: 790-797 CrossRef Google Scholar

[22] Li K B, Chen L, Tang G L. Algebraic solution of differential geometric guidance command and time delay control. Scie China Technol Sci, 2015, 58: 565-573 CrossRef Google Scholar

[23] Guo S P, Li D X, Meng Y H, et al. Task space control of free-floating space robots using constrained adaptive RBF-NTSM. Sci China Technol Sci, 2014, 57: 828-837 CrossRef Google Scholar

[24] Shen Y Y, Wang Y Q, Liu M L, et al. Acquisition algorithm assisted by AGC control voltage for DSSS signals. Sci China Technolog Sci, 2015, 58: 2195-2206 CrossRef Google Scholar

[25] Wang H X, Wang W Y, Zheng Y H. Bifurcation analysis for Hindmarsh-Rose neuronal model with time-delayed feedback control and application to chaos control. Sci China Technol Sci, 2014, 57: 872-878 CrossRef Google Scholar

[26] Derafa L, Benallegue A, Fridman L. Super twisting control algorithm for the attitude tracking of a four rotors UAV. J Franklin Inst, 2012, 349: 685-699 CrossRef Google Scholar

[27] Xu R, Ozguner U. Sliding mode control of a class of underactuated systems. Automatica, 2008, 44: 233-241 CrossRef Google Scholar

[28] Zhao B, Xian B, Zhang Y, et al. Nonlinear robust sliding mode control of a quadrotor unmanned aerial vehicle based on immersion and invariance method. Int J Robust Nonlinear Control, 2015, 18: 3714-3731 Google Scholar

[29] Liu H, Li D J, Zuo Z Y, et al. Robust three-loop trajectory tracking control for quadrotors with multiple uncertainties. IEEE Trans Ind Electron, 2016, 63: 2263-2274 Google Scholar

[30] Liu H, Wang X F, Zhong Y S. Quaternion-based robust attitude control for uncertain robotic quadrotors. IEEE Trans Ind Inform, 2015, 11: 406-415 CrossRef Google Scholar

[31] Liu H, Zhao W B, Zuo Z Y, et al. Robust control for quadrotors with multiple time-varying uncertainties and delays. IEEE Trans Ind Electron, 2016, doi: 10-415 Google Scholar

[32] Stevens B L, Lewis F L. Aircraft Control and Simulation. New Jersey: John Wiley & Sons, Inc., 2003. Google Scholar


Contact and support