logo

SCIENCE CHINA Information Sciences, Volume 60 , Issue 12 : 122501(2017) https://doi.org/10.1007/s11432-016-0569-2

Quantum correlations generation and distribution in a universal covariant quantum cloning circuit

More info
  • ReceivedAug 23, 2016
  • AcceptedOct 30, 2016
  • PublishedApr 1, 2017

Abstract


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant No. U1204114).


References

[1] Wootters W K, Zurek W H. A single quantum cannot be cloned. Nature, 1982, 299: 802-803 CrossRef ADS Google Scholar

[2] Scarani V, Iblisdir S, Gisin N. Quantum cloning. Rev Mod Phys, 2005, 77: 1225-1256 CrossRef ADS Google Scholar

[3] Fan H, Wang Y N, Jing L. Quantum cloning machines and the applications. Phys Rep, 2014, 544: 241-322 CrossRef ADS arXiv Google Scholar

[4] Horodecki R, Horodecki P, Horodecki M. Quantum entanglement. Rev Mod Phys, 2009, 81: 865-942 CrossRef ADS Google Scholar

[5] Bu?ek V, Hillery M, Ziman M. Programmable Quantum Processors. Quantum Inf Process, 2006, 5: 313-420 CrossRef Google Scholar

[6] Li J, Chen X, Sun X. Quantum network coding for multi-unicast problem based on 2D and 3D cluster states. Sci China Inf Sci, 2016, 59: 042301 CrossRef Google Scholar

[7] Zhang Z, Li J X, Liu L. Distributed state estimation and data fusion in wireless sensor networks using multi-level quantized innovation. Sci China Inf Sci, 2016, 59: 022316. Google Scholar

[8] Wang F, Luo M, Li H. Improved quantum ripple-carry addition circuit. Sci China Inf Sci, 2016, 59: 042406 CrossRef Google Scholar

[9] Bu?ek V, Hillery M. Quantum copying: Beyond the no-cloning theorem. Phys Rev A, 1996, 54: 1844-1852 CrossRef ADS Google Scholar

[10] Bu?ek V, Braunstein S L, Hillery M. Quantum copying: A network. Phys Rev A, 1997, 56: 3446-3452 CrossRef ADS Google Scholar

[11] Szabó L, Koniorczyk M, Adam P. Optimal universal asymmetric covariant quantum cloning circuits for qubit entanglement manipulation. Phys Rev A, 2010, 81: 032323 CrossRef ADS arXiv Google Scholar

[12] Wootters W K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys Rev Lett, 1998, 80: 2245-2248 CrossRef ADS Google Scholar

[13] Ollivier H, Zurek W H. Quantum discord: a measure of the quantumness of correlations. Phys Rev Lett, 2002, 88: 017901. Google Scholar

[14] Knill E, Laflamme R. Power of One Bit of Quantum Information. Phys Rev Lett, 1998, 81: 5672-5675 CrossRef ADS Google Scholar

[15] Datta A, Shaji A, Caves C M. Quantum Discord and the Power of One Qubit. Phys Rev Lett, 2008, 100: 050502 CrossRef PubMed ADS arXiv Google Scholar

[16] Coffman V, Kundu J, Wootters W K. Distributed entanglement. Phys Rev A, 2000, 61: 052306 CrossRef ADS Google Scholar

[17] Verstraete F, Dehaene J, De Moor B. Four qubits can be entangled in nine different ways. Phys Rev A, 2002, 65: 052112 CrossRef ADS Google Scholar

[18] Osterloh A, Siewert J. Constructing N -qubit entanglement monotones from antilinear operators. Phys Rev A, 2005, 72: 012337 CrossRef ADS Google Scholar

[19] Ren X J, Jiang W, Zhou X. Permutation-invariant monotones for multipartite entanglement characterization. Phys Rev A, 2008, 78: 012343 CrossRef ADS arXiv Google Scholar

[20] Ren X J, Fan H. Quantum circuits for asymmetric $1\rightarrow~n$ quantum cloning. Quantum Inf Comput, 2015, 15: 914--922. Google Scholar

[21] Ali M, Rau A R P, Alber G. Quantum discord for two-qubit X states. Phys Rev A, 2010, 81: 042105 CrossRef ADS arXiv Google Scholar

[22] Chen Q, Zhang C, Yu S. Quantum discord of two-qubit X states. Phys Rev A, 2011, 84: 042313 CrossRef ADS arXiv Google Scholar

[23] Ou Y C, Fan H. Bounds on negativity of superpositions. Phys Rev A, 2007, 76: 022320 CrossRef ADS arXiv Google Scholar

[24] Yu C, Yi X X, Song H. Concurrence of superpositions. Phys Rev A, 2007, 75: 022332 CrossRef ADS Google Scholar

[25] Song W, Liu N L, Chen Z B. Bounds on the multipartite entanglement of superpositions. Phys Rev A, 2007, 76: 054303 CrossRef ADS arXiv Google Scholar

[26] Parashar P, Rana S. Entanglement and discord of the superposition of Greenberger-Horne-Zeilinger states. Phys Rev A, 2011, 83: 032301 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) Quantum discords between the following pairs of qubits at the output of the cloning circuits: 1-2, 3-4, 1-3, 2-4. (a) The upper figure corresponds to $D_{3\rightarrow~4}$ and the lower one to $D_{1\rightarrow~2}$; (b) the upper one corresponds to $D_{2\rightarrow~4}$ and the lower one to $D_{1\rightarrow~3}$.