SCIENCE CHINA Information Sciences, Volume 59 , Issue 10 : 102301(2016) https://doi.org/10.1007/s11432-016-0358-0

Hardware-programmable optical networks

More info
  • ReceivedMay 28, 2016
  • AcceptedJul 13, 2016
  • PublishedSep 12, 2016


Funded by

EU-JP STRAUSS Project(G.A.608528)

EPSRC Grant TOUCAN(EP/L020009/1)



This work was supported by EU-JP STRAUSS Project (G.A.608528) and EPSRC Grant TOUCAN (EP/L020009/1).


[1] Cisco. The Zettabyte Era: Trends and Analysis. White Papers. Cisco, 2015. Google Scholar

[2] Wei W, Hu J Q, Qian D Y, et al. PONIARD: a programmable optical networking infrastructure for advanced research and development of future Internet. J Lightw Technol, 2009, 3: 233-242 Google Scholar

[3] Sleiffer V, Alfiad M, van den Borne D, et al. 10 times 224-Gb/s POLMUX-16QAM transmission over 656 km of large-rm {a}\rm eff\ PSCF with a spectral efficiency of 5. 6 b/s/Hz. IEEE Photon Technol Lett, 2011, 23: 1427-1429 CrossRef Google Scholar

[4] Jansen S, Morita I, Schenk T, et al. 121. 9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF. J Lightw Technol, 2009, 27: 177-188 Google Scholar

[5] Zhou X, Nelson L, Magill P, et al. PDM-Nyquist-32QAM for 450-Gb/s per-channel WDM transmission on the 50 GHz ITU-T grid. J Lightw Technol, 2012, 30: 553-559 CrossRef Google Scholar

[6] Masato Y, Shohei B, Keisuke K, et al. 1024 QAM, 7-core (60 Gbit/s $\times$ 7) fiber transmission over 55 km with an aggregate potential spectral efficiency of 109 bit/s/Hz. Opt Expr, 2015, 23: 20760-559 CrossRef Google Scholar

[7] van Uden R G H, Amezcua Correa R, Antonio Lopez E, et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photon, 2014, 8: 865-870 CrossRef Google Scholar

[8] Chandrasekhar S, Gnauck A H, Liu X, et al. WDM/SDM transmission of 10 $\times $ 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km. b/s/Hz. Opt Expr, 2012, 20: 706-711 CrossRef Google Scholar

[9] Layec P, Morea A, Vacondio F, et al. Elastic optical networks: the global evolution to software configurable optical networks. Bell Labs Tech J, 2013, 18: 133-151 CrossRef Google Scholar

[10] Recalcati M, Musumeci F, Tornatore M, et al. Benefits of elastic spectrum allocation in optical networks with dynamic traffic Communications (LATINCOM). In: Proceedings of 2014 IEEE Latin-America Conference on Communications, Cartagena de Indias, 2014. 1--6. Google Scholar

[11] Channegowda M, Nejabati R, Simeonidou D. Software-defined optical networks technology and infrastructure: enabling software-defined optical network operations. IEEE J Opt Commun Netw, 2013, 5: A274-A282 CrossRef Google Scholar

[12] Figuerola S, Lemay M. Infrastructure services for optical networks. IEEE/OSA J Opt Commun Netw, 2009, 1: A247-A257 CrossRef Google Scholar

[13] Varvarigos E. An introduction to routing and wavelength assignment algorithms for fixed and flexgrid. In: Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Anaheim, 2013. 1--55. Google Scholar

[14] Amaya N, Zervas G, Simeonidou D. Introducing node architecture flexibility for elastic optical networks. J Opt Commun Netw, 2013, 5: 593-596 CrossRef Google Scholar

[15] Liu X, Chandrasekhar S. Superchannel for next-generation optical networks. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, 2014. 1--33. Google Scholar

[16] Dupas A, Dutisseuil E, Layec P, et al. Real-time demonstration of software-defined elastic interface for flexgrid networks, In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, 2015. 1--3. Google Scholar

[17] Basch E B, Egorov R, Gringeri S, et al. Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems. IEEE J Sel Top Quantum Electron, 2006, 12: 615-626 CrossRef Google Scholar

[18] Garrich M, Oliveira J, Siqueira M, et al. Flexibility of programmable add/drop architecture for ROADMs. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, 2014. 1--3. Google Scholar

[19] Yan S Y, Hugues-Salas E, Rancano V J F, et al. Archon: a function programmable optical interconnect architecture for transparent intra and inter data center SDM/TDM/WDM networking. J Lightw Technol, 2015, 33: 1586-1595 CrossRef Google Scholar