SCIENCE CHINA Information Sciences, Volume 59 , Issue 12 : 122311(2016) https://doi.org/10.1007/s11432-016-0320-1

Energy efficiency and area spectral efficiency tradeoff for coexisting wireless body sensor networks

More info
  • ReceivedJun 13, 2016
  • AcceptedAug 16, 2016
  • PublishedNov 2, 2016




This work was supported by EPSRC TOUCAN Project (Grant No. EP/L020009/1), EU FP7 QUICK Project (Grant No. PIRSES-GA-2013-612652), EU H2020 ITN 5G Wireless Project (Grant No. 641985), National Natural Science Foundation of China (Grant Nos. 61210002, 61401256), MOST 863 Project in 5G (Grant No. 2014AA01A701), and International S&T Cooperation Program of China (Grant No. 2014DFA11640).


[1] Yang G Z. Body Sensor Networks. London: Springer, 2006. 1--397. Google Scholar

[2] Pantelopoulos A, Bourbakis N G. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans on Syst, 2010, 18: 1-12 CrossRef Google Scholar

[3] Martelli F, Verdone R. Coexistence issues for wireless body area networks at 2.45 GHz. In: Proceedings of European Wireless, Poznan, 2012. 18--20. Google Scholar

[4] Deylami M, Jovanov E. Performance analysis of coexisting IEEE 802.15.4-based health monitoring WBSNs. In: Proceedings of 34th Annual International Conference of the IEEE EMBS, San Diego, 2012. 2464--2467. Google Scholar

[5] Wang L S, Goursaud C, Nikaein N, et al. Cooperative scheduling for coexisting Body Area Networks. IEEE Trans Wirel Commun, 2012, 12: 123-133 Google Scholar

[6] ElSawy H, Hossain E, Haenggi M. Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a survey. IEEE Commun Surv Tut, 2013, 15: 996-1019 CrossRef Google Scholar

[7] Peng J L, Tang H, Hong P L, et al. Stochastic geometry analysis of energy efficiency in heterogeneous network with sleep control. IEEE Wirel Commun Lett, 2013, 2: 615-618 CrossRef Google Scholar

[8] Cavallari R, Martelli F, Rosini R. A survey on wireless body area networks: technologies and design challenges. IEEE Commun Surv Tut, 2014, 16: 1635-1657 CrossRef Google Scholar

[9] Williams B, Allen B, True H, et al. A real-time, mobile timed up and go system. In: Proceedings of IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks, Cambridge, 2015. 9--12. Google Scholar

[10] Hata Y, Kobashi S, Kuramoto K, et al. Home care system for aging people confined to bed by detached sensor netork. In: Proceedings of IEEE Workshop on Robotic Intelligence In Informationally Structured Space (RiiSS), Paris, 2011. 1--6. Google Scholar

[11] Mitchell E, Ahmadi A, Richter C, et al. Automatically detecting asymmetric running using time and frequency domain features. In: Proceedings of IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks, Cambridge, 2015. 1--6. Google Scholar

[12] IEEE Computer Society. IEEE 802.15.4 Standard, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE Std 802.15.4-2006. 2006. Google Scholar

[13] IEEE Computer Society. IEEE Standard for Local and Metropolitan Area Networks Part 15.6: Wireless Body Area Networks. IEEE Std 802.15.6-2012. 2012. Google Scholar

[14] Bluetooth SIG. Specification of the Bluetooth System. Version 4.0. 2010. Google Scholar

[15] Park P, Marco D P, Soldati P, et al. In: Proceeding of 6th Interference Conference on Mobile Adhoc and Sensor Systems, Macau, 2009. 130--139. Google Scholar

[16] Hesham E, Ekram H, Sergio C. Spectrum-efficient multi-channel design for coexisting IEEE 802. 15.4 networks:a stochastic geometry approach. IEEE J Sel Area Commun, 2014, 13: 1611-1624 Google Scholar

[17] Zhang C Q, Wang Y L, Liang Y Q, et al. An energy-efficient MAC protocol for medical emergency monitoring body sensor networks. Sensors, 2016, 16: 1-19 CrossRef Google Scholar

[18] IEEE Computer Society. IEEE 802.15.4, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs). Revision of IEEE Std 802.15.4-2003. 2006. Google Scholar

[19] Otal B, Alonso L, Verikoukis C. Highly reliable energy-saving MAC for wireless body sensor networks in healthcare systems. IEEE J Sel Area Commun, 2009, 27: 553-565 CrossRef Google Scholar

[20] Su H, Zhang X. Battery-dynamics driven TDMA MAC protocols for wireless body-area monitoring networks in healthcare applications. IEEE J Sel Area Commun, 2009, 27: 424-434 CrossRef Google Scholar

[21] Kim T H, Ha J Y, Choi S. Improving spectral and temporal efficiency of collocated IEEE 802. 15.4 LR-WPANs. IEEE Trans Mobile Comput, 2009, 8: 1596-1609 CrossRef Google Scholar

[22] Hong X M, Jie Y, Wang C X, et al. Energy-spectral efficiency trade-off in virtual MIMO cellular systems. IEEE J Sel Area Commun, 2013, 31: 2128-2140 CrossRef Google Scholar

[23] Ku I, Wang C X, Thompson J. Spectral-energy efficiency tradeoff in relay-aided cellular networks. IEEE Trans Wirel Commun, 2013, 12: 4970-4982 CrossRef Google Scholar

[24] Ngo H Q, Larsson E G, Marzetta T L. Energy and spectral efficiency of very large multiuser MIMO Systems. IEEE Trans Commun, 2013, 61: 1436-1449 CrossRef Google Scholar

[25] Yao Y W, Cai X D, Giannakis G B. On energy efficiency and optimum resource allocation of relay transmissions in the low-power regime. IEEE Trans Wirel Commun, 2005, 4: 2917-2927 CrossRef Google Scholar

[26] Martelli F, Buratti C, Verdone R. Modeling query-based wireless CSMA networks through stochastic geometry. IEEE Trans Veh Technol, 2014, 63: 2876-2885 CrossRef Google Scholar

[27] Shah-Mansouri H, Pakravan M R, Khalaj B H. Analytical modeling and performance analysis of flooding in CSMA-based wireless networks. IEEE Trans Veh Technol, 2011, 60: 664-679 CrossRef Google Scholar

[28] Kim T S, Kim S L. Random power control in wireless Ad Hoc networks. IEEE Commun Lett, 2005, 9: 1046-1048 CrossRef Google Scholar

[29] Zhang X C, Haenggi M. Random power control in Poisson networks. IEEE Trans Commun, 2012, 60: 2602-2611 CrossRef Google Scholar

[30] Pei Y Y, Liang Y C, eh K C, et al. Energy-efficient design of sequential channel sensing in cognitive radio networks: optimal sensing strategy, power allocation. IEEE J Sel Area Commun, 2011, 29: 1648-1659 CrossRef Google Scholar

[31] Tang S S, Zhang Y, Zhang L Q, et al. Spectrum-efficient wireless sensor networks. Int J Distrib Sens N, 2015, 11: 1-2 Google Scholar

[32] Alouini M S, Goldsmith A J. Area spectral efficiency of cellular mobile radio systems. IEEE Trans Veh Technol, 1999, 48: 1047-1066 CrossRef Google Scholar

[33] Zhang L, Yang H C, Hasna M O. Generalized area spectral efficiency: an effective performance metric for green wireless communications. IEEE Trans Commun, 2014, 62: 5367-5380 Google Scholar

[34] Akhtman J, Hanzo L. Power versus bandwidth efficiency in wireless communications: the economic perspective. In: Proceedings of IEEE 70th hicular Technology Conference-Fall, Alaska, 2009. 1--5. Google Scholar

[35] Guo W, O'Farrell T. Capacity-energy-cost tradeoff in small cell networks. In: Proceedings of IEEE 75th hicular Technology Conference-Spring, Yokohama, 2012. 1--5. Google Scholar

[36] Ha J Y, Kim T H, Park H S, et al. An enhanced CSMA-CA algorithm for IEEE 802. 15.4 LR-WPANs. IEEE Commun Lett, 2007, 11: 461-463 Google Scholar

[37] Baccelli F, Blaszczyszyn B. Stochastic Geometry and Wireless Networks, Volume II: Applications. Paris: Now Press, 2005. 68--88. Google Scholar

[38] Sousa E S, Silvester J. Optimum transmission ranges in a direct- sequence spread-spectrum multihop packet radio network. IEEE J Sel Area Commun, 1990, 8: 762-771 CrossRef Google Scholar

[39] Hasan A, Andrews J G. The guard zone in wireless Ad hoc networks. IEEE Trans Wirel Commun, 2007, 6: 897-906 CrossRef Google Scholar

[40] Haenggi M, On distances in uniformly random networks. IEEE Trans Inf Theory, 2005, 51: 3584--3586. Google Scholar

[41] Chiu S N, Stoyan D, Kendall W S, et al. Stochastic Geometry and Its Applications. 3rd ed. UK: Wiley Press, 2013. 35--55. Google Scholar

[42] Busson A, Chelius G, Gorce J. Interference Modeling in CSMA Multi-Hop Wireless Networks. Research Report--6624, INRIA. 2009. Google Scholar