SCIENCE CHINA Information Sciences, Volume 60 , Issue 3 : 032203(2017) https://doi.org/10.1007/s11432-016-0169-8

${\mathcal{L}}_{1}$ adaptive control of a generic hypersonic vehicle model with a blended pneumatic and thrust vectoring control strategy

More info
  • ReceivedApr 22, 2016
  • AcceptedJun 13, 2016
  • PublishedDec 9, 2016


  • Figure 1

    Conceptual block diagram of the proposed control scheme.

  • Figure 2

    Interconnection of the ${\mathcal{L}}_{1}$ adaptive control scheme.

  • Figure 3

    Reference trajectories. (a) $V_{\rm r}$; (b) $\gamma_r$.

  • Figure 4

    Tracking errors of the proposed control scheme. (a) Tracking error $V-V_{\rm r}$; (b) tracking error $\gamma-\gamma_r$.

  • Figure 5

    Control inputs of the proposed controller. (a) Control input $\beta$; (b) control input $\delta_{\rm e}$; (c) control input $\phi$.

  • Figure 6

    Tracking error plots. (a) $V$ tracking error; (b) $\gamma$ tracking error.

  • Figure 7

    Simulation results of the second test case study. (a) Control input $\delta_{\rm e}$; (b) control input $\phi$; (c) angular state $q$; (d) angular state $\alpha$; (e) dynamic pressure $\bar{q}$; (f) altitude $h$.

  • Table 1   Bounds of the uncertain aerodynamic coefficients
    Element of error vector Error bounds (3$\sigma$ limits)
    $\epsilon_{C_{\rm L}^{\alpha}}$ $\left[0.745,1.255\right]$
    $\epsilon_{C_{\rm D}^{\alpha}}$ $\left[0.88,1.12\right]$
    $\epsilon_{C_{\rm M}^{\alpha}}$ $\left[0.85,1.15\right]$
    $\epsilon_{C_{\rm M}^q}$ $\left[0.475,1.525\right]$
    $\epsilon_{C_{\rm M}^{\delta_{\rm e}}}$ $\left[0.925,1.075\right]$

Contact and support