logo

SCIENCE CHINA Information Sciences, Volume 59 , Issue 11 : 112102(2016) https://doi.org/10.1007/s11432-016-0074-9

Towards social behavior in virtual-agent navigation

More info
  • ReceivedJan 26, 2016
  • AcceptedMay 3, 2016
  • PublishedOct 14, 2016

Abstract


Acknowledgment

Acknowledgments

This research was partially funded by the COMMIT/ project: \url{http://www.commit-nl.nl}.


References

[1] James J. {The distribution of free-forming small group size}. Amer Sociol Rev, 1953, 18: 569-570 CrossRef Google Scholar

[2] Coleman J S, James J. The equilibrium size distribution of freely-forming groups. Sociometry, 1961, 24: 36-45 CrossRef Google Scholar

[3] Moussaïd M, Perozo N, Garnier S, et al. The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE, 2010, 5: e10047-45 CrossRef Google Scholar

[4] Kimmel A, Dobson A, Bekris K. Maintaining team coherence under the velocity obstacle framework. In: {Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012)}, Richland, 2012. 1: 247--256. Google Scholar

[5] Karamouzas I, Overmars M. Simulating and evaluating the local behavior of small pedestrian groups. IEEE Trans Vis Comput Graph, 2012, 18: 394-406 CrossRef Google Scholar

[6] Wu Q Q, Ji Q G, Du J H, et al. Simulating the local behavior of small pedestrian groups using synthetic-vision based steering approach. In: {Proceedings of the 12th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry (VRCAI 2013)}. New York: ACM, 2013. 41--50. Google Scholar

[7] Jaklin N, {Kremyzas} A, Geraerts R. Adding sociality to virtual pedestrian groups. In: {Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology (VRST 2015)}. New York: ACM, 2015. 163--172. Google Scholar

[8] Moussaïd M, Helbing D, Theraulaz G. How simple rules determine pedestrian behavior and crowd disasters. Proc Nat Acad Sci USA, 2011, 108: 6884-6888 CrossRef Google Scholar

[9] Geraerts R. Planning short paths with clearance using explicit corridors. In: {Proceedings of the 2010 IEEE International Conference on Robotics and Automation}, Anchorage, 2010. 1997--2004. Google Scholar

[10] Kallmann M. Shortest paths with arbitrary clearance from navigation meshes. In: {Proceedings of the 9th Eurographics/SIGGRAPH Symposium on Computer Animation (SCA 2010)}. Switzerland: Eurographics Association Aire-la-Ville, 2010. 159--168. Google Scholar

[11] Oliva R, Pelechano N. Clearance for diversity of agents' sizes in navigation meshes. Comput Graph, 2015, 47: 48-58 CrossRef Google Scholar

[12] Curtis S, Best A, Manocha D. Menge: a modular framework for simulating crowd movement. Technical Report. University of North Carolina at Chapel Hill, 2014. Google Scholar

[13] van Toll W, Jaklin N, Geraerts R. Towards believable crowds: a generic multi-level framework for agent navigation. In: {Proceedings of the 20th Annual Conference of the Advanced School for Computing and Imaging}, Amersfoort, 2015. Google Scholar

[14] Thalmann D, Musse S R. Crowd Simulation. 2nd ed. Berlin: Springer, 2013. Google Scholar

[15] Pelechano N, Allbeck J, Badler N. {Virtual Crowds: Methods, Simulation, and Control (Synthesis Lectures on Computer Graphics and Animation)}. San Rafael: Morgan and Claypool Publishers, 2008. Google Scholar

[16] Musse S, Thalmann D. A model of human crowd behavior: group inter-relationship and collision detection analysis. In: Thalmann D, van der Panne M, eds. Proceedings of the Eurographics Workshop in Budapest, Hungary, 1997. 39--51. Google Scholar

[17] Qiu F S, Hu X L. Modeling group structures in pedestrian crowd simulation. Simul Model Pract Theory, 2010, 18: 190-205 CrossRef Google Scholar

[18] Kamphuis A, Overmars M. Finding paths for coherent groups using clearance. In: {Proceedings of the 3rd ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 2004)}. Switzerland: Eurographics Association Aire-la-Ville, 2004. 19--28. Google Scholar

[19] Fiorini P, Shiller Z. Motion planning in dynamic environments using velocity obstacles. Int J Robot Res, 1998, 17: 760-772 CrossRef Google Scholar

[20] van den Berg J, Guy S, Lin M, et al. Reciprocal $n$-body collision avoidance. In: Pradalier C, Siegwart R, Hirzinger G, eds. {Robotics Research}. Berlin/Heidelberg: Springer, 2011. 3--19. Google Scholar

[21] Park S I, Quek F, Cao Y. Modeling social groups in crowds using common ground theory. In: {Proceedings of the Winter Simulation Conference (WSC 2012)}, Berlin, 2012. 113. Google Scholar

[22] Huang T Y, Kapadia M, Badler N I, et al. Path planning for coherent and persistent groups. In: {Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA 2014)}, Hong Kong, 2014. 1652--1659. Google Scholar

[23] Ond\v{r}ej J, Pettr{é} J, Olivier A-H, et al. A synthetic-vision based steering approach for crowd simulation. ACM Trans Graph, 2010, 29: 123-772 Google Scholar

[24] Fruin J J. {Pedestrian Planning and Design}. New York: Metropolitan Association of Urban Designers and Environmental Planners, 1971. Google Scholar

[25] Karamouzas I, Geraerts R, Overmars M. Indicative routes for path planning and crowd simulation. In: {Proceedings of the 4th International Conference on Foundations of Digital Games}. New York: ACM, 2009. 113--120. Google Scholar

[26] Jaklin N, Cook IV A, Geraerts R. Real-time path planning in heterogeneous environments. Comput Animat Virtual Worlds, 2013, 24: 285-295 CrossRef Google Scholar

[27] Zipf G K. {Human Behavior and the Principle of Least Effort.} Boston: Addison-Wesley Press, 1949. Google Scholar

[28] Costa M. Interpersonal distances in group walking. J Nonverbal Behav, 2010, 34: 15-26 CrossRef Google Scholar

[29] Fridman N, Kaminka G A, Zilka A. The impact of culture on crowd dynamics: an empirical approach. In: {Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems (AAMAS 2013)}, Richland, 2013. 143--150. Google Scholar

[30] Weidmann U. Transporttechnik der fussgänger. {IVT, Institut für Verkehrsplanung, Transporttechnik, Strassen-und Eisenbahnbau}, 90, 1992. Google Scholar

[31] K{ö}ster G, Treml F, Seitz M, et al. Validation of crowd models including social groups. In: Weidmann U, Kirsch U, Schreckenberg M, eds. {Pedestrian and Evacuation Dynamics 2012}. Switzerland: Springer International Publishing, 2014. 1051--1063. Google Scholar

[32] {Liddle} J, {Seyfried} A, {Steffen} B, et al. {Microscopic insights into pedestrian motion through a bottleneck, resolving spatial and temporal variations}. {arXiv:1105.1532v1}. Google Scholar

[33] Xu S, Duh H B-L. A simulation of bonding effects and their impacts on pedestrian dynamics. IEEE Trans Intell Transp Syst, 2010, 11: 153-161 CrossRef Google Scholar