logo

SCIENCE CHINA Information Sciences, Volume 59 , Issue 9 : 092203(2016) https://doi.org/10.1007/s11432-015-5488-2

Stochastic stability of cubature predictive filter

More info
  • ReceivedAug 31, 2015
  • AcceptedDec 16, 2015
  • PublishedAug 23, 2016

Abstract


Funded by

National Natural Science Foundation of China(61503414)

State Key Laboratory of Astronautic Dynamics Foundation(ADL)

(2016ADL-DW0202)


Acknowledgment

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 61503414) and State Key Laboratory of Astronautic Dynamics Foundation (ADL) (Grant No. 2016ADL-DW0202).


References

[1] Crassidis J L, Markley F. Predictive filter for attitude estimation without rate sensors. J Guid Control Dynam, 1997, 20: 522-527 CrossRef Google Scholar

[2] Crassidis J L. Efficient and optimal attitude determination using model-error control synthesis. J Guid Control Dynam, 1999, 22: 193-201 CrossRef Google Scholar

[3] Lin Y R, Deng Z L. Model-error based on predictive filter for satellite attitude determination. J Aeronaut, 2001, 22: 79-88 Google Scholar

[4] Anton D R. Nonlinear State-Estimation for Spacecraft Attitude Determination. Canada: University of Toronto, 2001. Google Scholar

[5] Ji H X, Yang J. Satellite attitude determination based on nonlinear predictive filter (in Chinese). J Syst Simul, 2010, 22: 34-38 Google Scholar

[6] Ajeesh P K, Sadasivan P. Performance analysis of nonlinear-predictive-filter-based chaotic synchronization. IEEE Trans Circ Syst-II: Express Brief, 2006, 53: 886-890 CrossRef Google Scholar

[7] Lu P. Nonlinear predictive controllers for continuous systems. J Guid Control Dynam, 1994, 17: 553-560 CrossRef Google Scholar

[8] Lu P. Nonlinear predictive controllers for continuous nonlinear systems. J Guid Control Dynam, 1995, 62: 633-649 Google Scholar

[9] Crassidis J L, Mason P A C, Mook D J. Riccati solution for the minimum model error algorithm. J Guid Control Dynamic, 1993, 16: 1181-1183 CrossRef Google Scholar

[10] Crassidis J L, Markley F. A minimum model error approach for attitude estimation. J Guid Control Dynam, 1997, 20: 1241-1247 CrossRef Google Scholar

[11] Li L, Xia Y Q. Stochastic stability of the unscented Kalman filter with intermittent observations. Automatica, 2012, 48: 978-981 CrossRef Google Scholar

[12] Arasaratnam I, Haykin S. Cubature Kalman filter. IEEE Trans Automatic Control, 2009, 54: 1254-1269 CrossRef Google Scholar

[13] Macagnano D, de Abreu G. Adaptive fating for multitarget tracking with Gussian mixture filters. IEEE Trans Signal Process, 2012, 60: 1533-1538 CrossRef Google Scholar

[14] Tarn T J, Rasis Y. Observers for nonlinear stochastic systems. IEEE Trans Automat Contr, 1976, 21: 441-448 CrossRef Google Scholar

[15] Reif K, Gunther S, Yaz E, et al. Stochastic stability of the discrete-time extended Kalman filter. IEEE Trans Automat Contr, 1999, 44: 714-728 CrossRef Google Scholar

[16] Goodwin G C, Sin K S. Adaptive Filtering, Prediction and Control. Englewood Cliffs: Prentice-Hall, 1984. Google Scholar

[17] Lewis F L. Optimal Estimation. New York: Wiley, 1986. Google Scholar

[18] Zurmuhl R, Falk F. Matrizen und ihre Anwendungen fur Angewandte Mathematiker, Physiker und Ingenieure. Berlin: Springer-Verlag, 1984. Google Scholar

[19] Gard T C. Introduction to Stochastic Differential Equation. New York: Marcel Dekker, 1988. Google Scholar

qqqq

Contact and support