logo

SCIENCE CHINA Information Sciences, Volume 59 , Issue 6 : 062310(2016) https://doi.org/10.1007/s11432-015-5477-5

DLSLA 3-D SAR imaging algorithm for off-grid targets based on pseudo-polar formatting \\and atomic norm minimization

More info
  • ReceivedSep 7, 2015
  • AcceptedOct 20, 2015
  • PublishedApr 23, 2016

Abstract


Funded by

Innovation of the Chinese Academy of Sciences International Partnership Project(Y313110240)

National Natural Science Foundation of China(61201433)

National Natural Science Foundation of China(61372186)

Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT-14-B09)


Acknowledgment

Acknowledgments

The work was supported by Innovation of the Chinese Academy of Sciences International Partnership Project (Grant No. Y313110240), National Natural Science Foundation of China (Grant Nos. 61201433, 61372186), and Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (Grant No. NJYT-14-B09).


References

[1] Soumekh M. Synthetic Aperture Radar Signal Processing with Matlab Algorithms. New York: Wiley, 1999. Google Scholar

[2] Zhu X, Bamler R. IEEE Trans Geosci Remote Sens, 2012, 50: 247-258 Google Scholar

[3] Aguilera E, Nannini M, Reigber A. IEEE Trans Geosci Remote Sens, 2013, 51: 5283-5295 Google Scholar

[4] Lin Y, Hong W, Tan W X, et al. Airborne circular SAR imaging: results at P-band. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, 2012. 5594--5597. Google Scholar

[5] Shi J, Zhang X L, Xiang G, et al. IEEE Trans Geosci Remote Sens, 2012, 50: 4584-4598 Google Scholar

[6] Du L, Wang Y P, Hong W, et al. EURASIP J Adv Signal Process, 2010, 2010: 1-15 Google Scholar

[7] Peng X M, Hong W, Wang Y P, et al. IEEE Geosci Remote Sens Lett, 2014, 11: 1036-1040 Google Scholar

[8] Weib M, Ender J H G. A 3-D imaging radar for small unmanned airplanes-ARTINO. In: Proceedings of European Radar Conference, Paris, 2005. 209--212. Google Scholar

[9] Peng X M, Wang Y P, Hong W, et al. Remote Sens, 2013, 5: 5304-5329 Google Scholar

[10] Wei S J, Zhang X L, Shi J. Progress in Electromagn Res, 2011, 117: 299-319 Google Scholar

[11] Ren X Z, Chen L, Yang J. Int J Antenn Propag, 2014, 2014: 612326-319 Google Scholar

[12] Li Z, Chen J, Li C S. IEEE Trans Aero Electron Syst, 2014, 50: 2830-2846 Google Scholar

[13] Candes E J, Wakin M B. IEEE Signal Process Mag, 2008, 25: 21-30 Google Scholar

[14] Fannjiang A, Tseng H C. Inverse Problems, 2013, 29: 054008-30 Google Scholar

[15] Chi Y, Scharf L L, Pezeshki A, et al. IEEE Trans Signal Process, 2011, 59: 2182-2195 Google Scholar

[16] Rao W, Li G, Wang X, et al. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2013, 6: 942-952 Google Scholar

[17] He X Y, Liu C C, Liu B, et al. Remote Sens, 2013, 5: 631-647 Google Scholar

[18] Yan H C, Xu J, Xia X G, et al. Sci China Inf Sci, 2015, 58: 020306-647 Google Scholar

[19] Tang G, Bhaskar B N, Shah P, et al. IEEE Trans Inf Theory, 2013, 59: 7465-7490 Google Scholar

[20] Bhaskar B N, Tang G, Recht B. IEEE Trans Signal Process, 2013, 61: 5987-5999 Google Scholar

[21] Yang Z, Xie L H. Continuous compressed sensing with a single or multiple measurement vectors. In: Proceedings of IEEE Workshop on Statistical Signal Processing (SSP), Gold Coast, 2014. 288--291. Google Scholar

[22] Zhang Z, Zhang B C, Jiang C L, et al. Sci China Inf Sci, 2012, 55: 2301-2317 Google Scholar

[23] Grant M, Boyd S. CVX: Matlab software for disciplined convex programming. Version 2.1. http://cvxr.com/cvx. 2014. Google Scholar

[24] Daubechies I, Defriese M, de Mol C. Commun Pure Appl Math, 2004, 57: 1413-1457 Google Scholar

[25] van Trees H L. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory. New York: Wiley, 2002. Google Scholar

[26] Toh K C, Todd M J, Tütüncü R H. 3. Optimiz Method Softw, 1999, 11: 545-581 Google Scholar