SCIENCE CHINA Information Sciences, Volume 59 , Issue 10 : 102309(2016) https://doi.org/10.1007/s11432-015-5452-1

CodeHop: physical layer error correction and encryption with LDPC-based code hopping

More info
  • ReceivedJul 3, 2015
  • AcceptedJul 30, 2015
  • PublishedMar 30, 2016


Funded by

National Basic Research Program of China(2013CB329001)

National Natural Science Foundation of China(Grants Nos. 61132002)

National Natural Science Foundation of China(61101072)



This work was supported by National Basic Research Program of China (Grant No. 2013CB329001) and National Natural Science Foundation of China (Grants Nos. 61132002, 61101072).


[1] Liang Y, Poor H V, Shamai S. Information theoretic security. Found Trends Commun Inf Theory, 2009, 5: 355-580 Google Scholar

[2] Wang B, Mu P C, Yang P Z, et al. Two-step transmission with artificial noise for secure wireless SIMO communications. Sci China Inf Sci, 2015, 58: 042308-580 Google Scholar

[3] Barkan E, Biham E. Conditional estimators: an effective attack on {A5/1}. In: Selected Areas in Cryptography. Berlin: Springer, 2006, 3897: 1--19. Google Scholar

[4] Wyner A D. The wire-tap channel. Bell Syst Tech J, 1975, 54: 1355-1387 CrossRef Google Scholar

[5] Thangaraj A, Dihidar S, Calderbank A R, et al. Applications of LDPC codes to the wiretap channel. IEEE Trans Inf Theory, 2007, 53: 2933-2945 CrossRef Google Scholar

[6] Wen H, Gong G, Ho P H. Build-in wiretap channel I with feedback and LDPC codes. J Commun Netw, 2009, 11: 538-543 CrossRef Google Scholar

[7] Klinc D, Ha J, McLaughlin S W, et al. {LDPC} codes for physical layer security. In: Proceedings of the 28th IEEE Conference on Global Telecommunications. New York: IEEE Press, 2009. 5765--5770. Google Scholar

[8] Z{ú}quete A, Barros J. Physical-layer encryption with stream ciphers. In: IEEE International Symposium on Information Theory, Toronto, 2008. 106--110. Google Scholar

[9] Barkan E, Biham E, Keller N. Instant ciphertext-only cryptanalysis of gsm encrypted communication. J Cryptol, 2008, 21: 392-429 CrossRef Google Scholar

[10] Harrison W K, Almeida J, McLaughlin S W, et al. Coding for cryptographic security enhancement using stopping sets. IEEE Trans Inf Foren Secur, 2011, 6: 575-584 CrossRef Google Scholar

[11] Schneier B. {Applied Cryptography Protocols, Algorithms, and Source Code in C}. 2nd ed. New York: John Wiley & Sons, 1996. Google Scholar

[12] Wei S, Wang J, Yin R, et al. Trade-off between security and performance in block ciphered systems with erroneous ciphertexts. IEEE Trans Inf Foren Secur, 2013, 8: 636-645 CrossRef Google Scholar

[13] Mathur C N, Narayan K, Subbalakshmi K. On the design of error-correcting ciphers. EURASIP J Wirel Commun Netw, 2006, 2006: 72-645 Google Scholar

[14] National Institute of Standards and Technology, U.S. Department of Commerce. Advanced Encryption Standard (AES). FIPS PUB 197. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf. 2001. Google Scholar

[15] Adamo O, Fu S, Varanasi M R. Physical layer error correction based cipher. In: IEEE Global Telecommunications Conference, Miami, 2010. 1--5. Google Scholar

[16] Chai Q, Gong G. Differential cryptanalysis of two joint encryption and error correction schemes. In: IEEE Global Telecommunications Conference, Houston, 2011. 1--6. Google Scholar

[17] Anzalchi J, Couchman A, Gabellini P, et al. Beam hopping in multi-beam broadband satellite systems: system simulation and performance comparison with non-hopped systems. In: the 5th Advanced Satellite Multimedia Systems Conference (asma) and the 11th Signal Processing for Space Communications Workshop (spsc), Cagliari, 2010. 248--255. Google Scholar

[18] Wen H, Gong G, Lv S C, et al. Framework for MIMO cross-layer secure communication based on STBC. Telecommun Syst, 2013, 52: 2177-2185 CrossRef Google Scholar

[19] Thorpe J. Low-density parity-check {(LDPC)} codes constructed from protographs. IPN Progress Report, 2003, 42: 42-154 Google Scholar

[20] Abbasfar A, Divsalar D, Yao K. Accumulate-repeat-accumulate codes. IEEE Trans Commun, 2007, 55: 692-702 CrossRef Google Scholar

[21] Consultative Committee for Space Data Systems. Recommendation for Space Data Systems Standards: TM Synchronization and Channel Coding. CCSDS 131.0-B-2 Blue Book. http://public.ccsds.org/publications/archive/131x0b2 ec1.pdf. 2011. Google Scholar

[22] Brink S, Kramer G. Design of repeat-accumulate codes for iterative detection and decoding. IEEE Trans Signal Process, 2003, 51: 2764-2772 CrossRef Google Scholar

[23] Zhang L J, Li B, Cheng L L. Constructions of QC LDPC codes based on integer sequences. Sci China Inf Sci, 2014, 57: 062304-2772 Google Scholar

[24] Liu X, Xiong F, Zhou Z, et al. Construction of quasi-cyclic LDPC cycle codes over Galois field GF(q) based on cycle entropy and applications on patterned media storage. IEEE Trans Magnetics, 2015, 51: 7209305-2772 Google Scholar

[25] Andrews K, Dolinar S, Divsalar D, et al. Design of low-density parity-check (LDPC) codes for deep-space applications. IPN Progress Report, 2004, 42: 42-159 Google Scholar

[26] Andrews K, Dolinar S, Thorpe J. Encoders for block-circulant ldpc codes. In: International Symposium on Information Theory, Adelaide, 2005. 2300--2304. Google Scholar

[27] Li Z, Chen L, Zeng L, et al. Efficient encoding of quasi-cyclic low-density parity-check codes. IEEE Trans Commun, 2006, 54: 71-81 CrossRef Google Scholar

[28] Bogdanov A, Mertens M, Paar C, et al. SMITH-A parallel hardware architecture for fast Gaussian elimination over GF(2). In: Workshop on Special-purpose Hardware for Attacking Cryptographic Systems (SHARCS), Cologne, 2006. Google Scholar

[29] Richardson T J, Urbanke R L. Efficient encoding of low-density parity-check codes. IEEE Trans Inf Theory, 2001, 47: 638-656 CrossRef Google Scholar

[30] Ueng Y L, Yang B J, Yang C J, et al. An efficient multi-standard LDPC decoder design using hardware-friendly shuffled decoding. IEEE Trans Circuits Syst I Reg Papers, 2013, 60: 743-756 CrossRef Google Scholar

[31] Otmani A, Tillich J P, Dallot L. Cryptanalysis of two mceliece cryptosystems based on quasi-cyclic codes. Math Comput Sci, 2010, 3: 129-140 CrossRef Google Scholar