logo

SCIENCE CHINA Information Sciences, Volume 59 , Issue 3 : 032111(2016) https://doi.org/10.1007/s11432-015-5447-y

Cryptanalysis of an MOR cryptosystem based on a finite associative algebra

More info
  • ReceivedApr 24, 2015
  • AcceptedJul 24, 2015
  • PublishedJan 26, 2016

Abstract


Funded by

Fundamental Research Funds for the Central Universities(2012211020213)

national Natural Science Foundation of China(60970006)

foundation of Science and Technology on Information Assurance Laboratory(KJ-14-002)

national Natural Science Foundation of China(61003267)

national Natural Science Foundation of China(61332019)

major State Basic Research Development Program of China(2014CB340600)


References

[1] Deutsch D, Jozsa R. Proc Roy Soc A-Math Phys Eng, 1992, 439: 553-558 CrossRef Google Scholar

[2] Simon D R. SIAM J Comput, 1997, 26: 1474-1483 CrossRef Google Scholar

[3] Shor P W. SIAM Rev, 1999, 41: 303-332 CrossRef Google Scholar

[4] Grover L K. Phys Rev Lett, 1997, 79: 325-328 CrossRef Google Scholar

[5] Mosca M, Ekert A. The hidden subgroup problem and eigenvalue estimation on a quantum computer. Quantum Comput Quantum Commun, 1999: 174--188. Google Scholar

[6] Ko K H, Lee S J, Cheon J H, et al. New public-key cryptosystem using braid groups. In: Proceedings of 20th Annual International Cryptology Conference, Santa Barbara, 2000. 166--183. Google Scholar

[7] Paeng S H, Ha K C, Kim J H, et al. New public key cryptosystem using finite non Abelian groups. In: Proceedings of 21st Annual International Cryptology Conference, Santa Barbara, 2001. 470--485. Google Scholar

[8] Lempken W, van Tran T, Magliveras S S, et al. J Cryptol, 2009, 22: 62-74 CrossRef Google Scholar

[9] Mahalanobis A. Commun Algebra, 2012, 40: 3583-3596 CrossRef Google Scholar

[10] Paeng S H. Inf Process Lett, 2003, 88: 293-298 CrossRef Google Scholar

[11] Tobias C. Security analysis of the MOR cryptosystem. In: Proceedings of 6th International Workshop on Practice and Theory in Public Key Cryptography, Miami, 2002. 175--186. Google Scholar

[12] Lee I S, Kim W H, Kwon D, et al. On the security of MOR public key cryptosystem. In: Proceedings of 10th International Conference on the Theory and Application of Cryptology and Information Security, Jeju Island, 2004. 387--400. Google Scholar

[13] Korsten A. Cryptanalysis of MOR and discrete logarithms in inner automorphism groups. In: Proceedings of 2nd Western European Workshop on Research in Cryptology, Bochum, 2008. 78--89. Google Scholar

[14] Mahalanobis A. Commun Algebra, 2006, 40: 3583-3596 Google Scholar

[15] Babai L, Beals R, Seress Á. Polynomial-time theory of matrix groups. In: Proceedings of 41st Annual ACM Symposium on Theory of Computing. New York: ACM, 2009. 55--64. Google Scholar

[16] Friedl K, Ivanyos G, Magniez F, et al. Hidden translation and orbit coset in quantum computing. In: Proceedings of 35th Annual ACM Symposium on Theory of Computing. New York: ACM, 2003. 1--9. Google Scholar

[17] Hallgren S, Russell A, Ta-Shma A. SIAM J Comput, 2003, 32: 916-934 CrossRef Google Scholar

[18] Childs A M, van Dam W. Rev Mod Phys, 2010, 82: 1-52 CrossRef Google Scholar

[19] Wei H Z, Wang Y X. J Hebei Normal Univ, 1993, 17: 1-13 Google Scholar