logo

SCIENCE CHINA Information Sciences, Volume 59 , Issue 4 : 042408(2016) https://doi.org/10.1007/s11432-015-5440-5

LSB page refresh based retention error recovery scheme for MLC NAND Flash

More info
  • ReceivedMay 26, 2015
  • AcceptedJul 9, 2015
  • PublishedJan 15, 2016

Abstract


Funded by

"source" : null , "contract" : "2011CBA00602"

National Natural Science Foundation of China(61106102)

National Key Scientific and Technological Project(2013ZX01032001-001)

National Basic Research Program of China(973)


References

[1] Choi S, Kim D, Choi S, et al. 19.2 A 93.4 mm$^2$ 64 GB MLC NAND-flash memory with 16 nm CMOS technology. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). San Francisco: IEEE, 2014. 328--329. Google Scholar

[2] Helm M, Park J K, Ghalam A, et al. 19.1 A 128 Gb MLC NAND-flash device using 16 nm planar cell. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). San Francisco: IEEE, 2014. 326--327. Google Scholar

[3] Koh Y. NAND flash scaling beyond 20 nm. In: IEEE International Memory Workshop, IMW'09. Monterey: IEEE, 2009. 1--3. Google Scholar

[4] Yoon J H, Tressler G A. Advanced flash technology status, scaling trends implications to enterprise SSD technology enablement. In: Flash Memory Summit, Santa Clara, 2012. Google Scholar

[5] Kang D, Lee K, Seo S, et al. IEEE Electron Device Lett, 2013, 34: 1139-1141 CrossRef Google Scholar

[6] Ho K C, Fang P C, Li H P, et al. A 45 nm 6b/cell charge-trapping flash memory using LDPC-based ECC and drift-immune soft-sensing engine. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). San Francisco: IEEE, 2013. 222--223. Google Scholar

[7] Dong G, Xie N, Zhang T. IEEE Trans Circuits Syst I Regular Papers, 2013, 60: 2412-2421 CrossRef Google Scholar

[8] Tanakamaru S, Yanagihara Y, Takeuchi K. Over-10x-Extended-Lifetime 76\. Google Scholar

[9] Tanakamaru S, Yanagihara Y, Takeuchi K. IEEE J Solid-State Circ, 2013, 48: 2920-2933 CrossRef Google Scholar

[10] Tanakamaru S, Doi M, Takeuchi K. Error-prediction analyses in 1X, 2X and 3X nm NAND flash memories for system-level reliability improvement of solid-state drives (SSDs). In: IEEE International Reliability Physics Symposium (IRPS). Anaheim: IEEE, 2013. 3B.3.1--3B.3.6. Google Scholar

[11] Ma H, Zou H, Pan L, et al. MLC nand flash retention error recovery scheme through word line program disturbance. In: International Symposium on Next-Generation Electronics (ISNE). Kwei-Shan: IEEE, 2014. 1--2. Google Scholar

[12] Micheloni R, Marelli A, Commodaro S. NAND overview: from memory to systems. In: Micheloni R, Crippa L, Marelli A, eds. Inside NAND Flash Memories. New York: Spinger, 2010. 19--53. Google Scholar

[13] JEDEC Solid State Technology Association. Stress-test-driven qualification of integrated circuits. JESD47G. http://www.jedec.org/. 2010. Google Scholar

[14] Olivo P, Ricco B, Sangiorgi E. Appl Phys Lett, 1986, 48: 1135-1137 CrossRef Google Scholar

[15] Cappelletti P, Bez R, Cantarelli D, et al. Failure mechanisms of flash cell in program/erase cycling. In: International Electron Devices Meeting IEDM'94 Technical Digest. San Francisco: IEEE, 1994. 291--294. Google Scholar

[16] Cai Y, Haratsch E F, Mutlu O, et al. Error patterns in MLC NAND flash memory: measurement, characterization, and analysis. In: Design, Automation and Test in Europe Conference and Exhibition (DATE). Dresden: IEEE, 2012. 521--526. Google Scholar

[17] Dong G, Pan Y, Xie N, et al. IEEE Trans Very Large Scale Integration Syst, 2012, 20: 1705-1714 CrossRef Google Scholar

[18] Satoh S, Hagiwara H, Tanzawa T, et al. A novel isolation-scaling technology for NAND EEPROMs with the minimized program disturbance. In: International Electron Devices Meeting IEDM'97 Technical Digest. Washington: IEEE, 1997. 291--294. Google Scholar

[19] Lee D, Hur H, Choi D. IEEE Electron Device Lett, 2002, 23: 264-266 CrossRef Google Scholar

[20] Monzio Compagnoni C, Spinelli A S, Gusmeroli R, et al. IEEE Trans Electron Devices, 2008, 55: 2695-2702 CrossRef Google Scholar

[21] Lee J D, Choi J H, Park D, et al. IEEE Electron Device Lett, 2004, 24: 748-750 Google Scholar

[22] Papadas C, Pananakakis G, Ghibaudo G, et al. IEEE Trans Electron Devices, 1995, 42: 678-682 CrossRef Google Scholar

[23] Choi Y J, Suh K D, Koh Y N, et al. A high speed programming scheme for multi-level NAND flash memory. In: IEEE Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, 1996. 170--171. Google Scholar

[24] Miki H, Osabe T, Tega N, et al. Quantitative analysis of random telegraph signals as fluctuations of threshold voltages in scaled flash memory cells. In: Proceedings of 45th Annual IEEE International Reliability Physics Symposium. Phoenix: IEEE, 2007. 29--35. Google Scholar