References
[1]
Choi S, Kim D, Choi S, et al. 19.2 A 93.4 mm$^2$ 64 GB MLC NAND-flash memory with 16 nm CMOS technology. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). San Francisco: IEEE, 2014. 328--329.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Choi S, Kim D, Choi S, et al. 19.2 A 93.4 mm$^2$ 64 GB MLC NAND-flash memory with 16 nm CMOS technology. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). San Francisco: IEEE, 2014. 328--329&
[2]
Helm M, Park J K, Ghalam A, et al. 19.1 A 128 Gb MLC NAND-flash device using 16 nm planar cell. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). San Francisco: IEEE, 2014. 326--327.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Helm M, Park J K, Ghalam A, et al. 19.1 A 128 Gb MLC NAND-flash device using 16 nm planar cell. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). San Francisco: IEEE, 2014. 326--327&
[3]
Koh Y. NAND flash scaling beyond 20 nm. In: IEEE International Memory Workshop, IMW'09. Monterey: IEEE, 2009. 1--3.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Koh Y. NAND flash scaling beyond 20 nm. In: IEEE International Memory Workshop, IMW'09. Monterey: IEEE, 2009. 1--3&
[4]
Yoon J H, Tressler G A. Advanced flash technology status, scaling trends implications to enterprise SSD technology enablement. In: Flash Memory Summit, Santa Clara, 2012.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yoon J H, Tressler G A. Advanced flash technology status, scaling trends implications to enterprise SSD technology enablement. In: Flash Memory Summit, Santa Clara, 2012&
[5]
Kang
D,
Lee
K,
Seo
S, et al.
IEEE Electron Device Lett,
2013, 34: 1139-1141
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Kang D&author=Lee K&author=Seo S&publication_year=2013&journal=IEEE Electron Device Lett&volume=34&pages=1139-1141
[6]
Ho K C, Fang P C, Li H P, et al. A 45 nm 6b/cell charge-trapping flash memory using LDPC-based ECC and drift-immune soft-sensing engine. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). San Francisco: IEEE, 2013. 222--223.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ho K C, Fang P C, Li H P, et al. A 45 nm 6b/cell charge-trapping flash memory using LDPC-based ECC and drift-immune soft-sensing engine. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). San Francisco: IEEE, 2013. 222--223&
[7]
Dong
G,
Xie
N,
Zhang
T.
IEEE Trans Circuits Syst I Regular Papers,
2013, 60: 2412-2421
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Dong G&author=Xie N&author=Zhang T&publication_year=2013&journal=IEEE Trans Circuits Syst I Regular Papers&volume=60&pages=2412-2421
[8]
Tanakamaru S, Yanagihara Y, Takeuchi K. Over-10x-Extended-Lifetime 76\.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tanakamaru S, Yanagihara Y, Takeuchi K. Over-10x-Extended-Lifetime 76\&
[9]
Tanakamaru
S,
Yanagihara
Y,
Takeuchi
K.
IEEE J Solid-State Circ,
2013, 48: 2920-2933
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Tanakamaru S&author=Yanagihara Y&author=Takeuchi K&publication_year=2013&journal=IEEE J Solid-State Circ&volume=48&pages=2920-2933
[10]
Tanakamaru S, Doi M, Takeuchi K. Error-prediction analyses in 1X, 2X and 3X nm NAND flash memories for system-level reliability improvement of solid-state drives (SSDs). In: IEEE International Reliability Physics Symposium (IRPS). Anaheim: IEEE, 2013. 3B.3.1--3B.3.6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tanakamaru S, Doi M, Takeuchi K. Error-prediction analyses in 1X, 2X and 3X nm NAND flash memories for system-level reliability improvement of solid-state drives (SSDs). In: IEEE International Reliability Physics Symposium (IRPS). Anaheim: IEEE, 2013. 3B.3.1--3B.3.6&
[11]
Ma H, Zou H, Pan L, et al. MLC nand flash retention error recovery scheme through word line program disturbance. In: International Symposium on Next-Generation Electronics (ISNE). Kwei-Shan: IEEE, 2014. 1--2.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ma H, Zou H, Pan L, et al. MLC nand flash retention error recovery scheme through word line program disturbance. In: International Symposium on Next-Generation Electronics (ISNE). Kwei-Shan: IEEE, 2014. 1--2&
[12]
Micheloni R, Marelli A, Commodaro S. NAND overview: from memory to systems. In: Micheloni R, Crippa L, Marelli A, eds. Inside NAND Flash Memories. New York: Spinger, 2010. 19--53.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Micheloni R, Marelli A, Commodaro S. NAND overview: from memory to systems. In: Micheloni R, Crippa L, Marelli A, eds. Inside NAND Flash Memories. New York: Spinger, 2010. 19--53&
[13]
JEDEC Solid State Technology Association. Stress-test-driven qualification of integrated circuits. JESD47G. http://www.jedec.org/. 2010.
Google Scholar
http://scholar.google.com/scholar_lookup?title=JEDEC Solid State Technology Association. Stress-test-driven qualification of integrated circuits. JESD47G. http://www.jedec.org/. 2010&
[14]
Olivo
P,
Ricco
B,
Sangiorgi
E.
Appl Phys Lett,
1986, 48: 1135-1137
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Olivo P&author=Ricco B&author=Sangiorgi E&publication_year=1986&journal=Appl Phys Lett&volume=48&pages=1135-1137
[15]
Cappelletti P, Bez R, Cantarelli D, et al. Failure mechanisms of flash cell in program/erase cycling. In: International Electron Devices Meeting IEDM'94 Technical Digest. San Francisco: IEEE, 1994. 291--294.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cappelletti P, Bez R, Cantarelli D, et al. Failure mechanisms of flash cell in program/erase cycling. In: International Electron Devices Meeting IEDM'94 Technical Digest. San Francisco: IEEE, 1994. 291--294&
[16]
Cai Y, Haratsch E F, Mutlu O, et al. Error patterns in MLC NAND flash memory: measurement, characterization, and analysis. In: Design, Automation and Test in Europe Conference and Exhibition (DATE). Dresden: IEEE, 2012. 521--526.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cai Y, Haratsch E F, Mutlu O, et al. Error patterns in MLC NAND flash memory: measurement, characterization, and analysis. In: Design, Automation and Test in Europe Conference and Exhibition (DATE). Dresden: IEEE, 2012. 521--526&
[17]
Dong
G,
Pan
Y,
Xie
N, et al.
IEEE Trans Very Large Scale Integration Syst,
2012, 20: 1705-1714
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Dong G&author=Pan Y&author=Xie N&publication_year=2012&journal=IEEE Trans Very Large Scale Integration Syst&volume=20&pages=1705-1714
[18]
Satoh S, Hagiwara H, Tanzawa T, et al. A novel isolation-scaling technology for NAND EEPROMs with the minimized program disturbance. In: International Electron Devices Meeting IEDM'97 Technical Digest. Washington: IEEE, 1997. 291--294.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Satoh S, Hagiwara H, Tanzawa T, et al. A novel isolation-scaling technology for NAND EEPROMs with the minimized program disturbance. In: International Electron Devices Meeting IEDM'97 Technical Digest. Washington: IEEE, 1997. 291--294&
[19]
Lee
D,
Hur
H,
Choi
D.
IEEE Electron Device Lett,
2002, 23: 264-266
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Lee D&author=Hur H&author=Choi D&publication_year=2002&journal=IEEE Electron Device Lett&volume=23&pages=264-266
[20]
Monzio
Compagnoni C,
Spinelli
A S,
Gusmeroli
R, et al.
IEEE Trans Electron Devices,
2008, 55: 2695-2702
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Monzio Compagnoni C&author=Spinelli A S&author=Gusmeroli R&publication_year=2008&journal=IEEE Trans Electron Devices&volume=55&pages=2695-2702
[21]
Lee
J D,
Choi
J H,
Park
D, et al.
IEEE Electron Device Lett,
2004, 24: 748-750
Google Scholar
http://scholar.google.com/scholar_lookup?author=Lee J D&author=Choi J H&author=Park D&publication_year=2004&journal=IEEE Electron Device Lett&volume=24&pages=748-750
[22]
Papadas
C,
Pananakakis
G,
Ghibaudo
G, et al.
IEEE Trans Electron Devices,
1995, 42: 678-682
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Papadas C&author=Pananakakis G&author=Ghibaudo G&publication_year=1995&journal=IEEE Trans Electron Devices&volume=42&pages=678-682
[23]
Choi Y J, Suh K D, Koh Y N, et al. A high speed programming scheme for multi-level NAND flash memory. In: IEEE Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, 1996. 170--171.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Choi Y J, Suh K D, Koh Y N, et al. A high speed programming scheme for multi-level NAND flash memory. In: IEEE Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, 1996. 170--171&
[24]
Miki H, Osabe T, Tega N, et al. Quantitative analysis of random telegraph signals as fluctuations of threshold voltages in scaled flash memory cells. In: Proceedings of 45th Annual IEEE International Reliability Physics Symposium. Phoenix: IEEE, 2007. 29--35.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Miki H, Osabe T, Tega N, et al. Quantitative analysis of random telegraph signals as fluctuations of threshold voltages in scaled flash memory cells. In: Proceedings of 45th Annual IEEE International Reliability Physics Symposium. Phoenix: IEEE, 2007. 29--35&