References
[1]
Stone
M H.
The theory of representations for Boolean algebras.
Trans American Math Soc,
1936, 40: 37-111
Google Scholar
http://scholar.google.com/scholar_lookup?title=The theory of representations for Boolean algebras&author=Stone M H&publication_year=1936&journal=Trans American Math Soc&volume=40&pages=37-111
[2]
Abramsky
S.
Domain theory in logical form.
Ann Pure Appl Logic,
1991, 51: 1-77
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Domain theory in logical form&author=Abramsky S&publication_year=1991&journal=Ann Pure Appl Logic&volume=51&pages=1-77
[3]
Isbell
J.
Atomless parts of spaces.
Math Scand,
1972, 31: 5-32
Google Scholar
http://scholar.google.com/scholar_lookup?title=Atomless parts of spaces&author=Isbell J&publication_year=1972&journal=Math Scand&volume=31&pages=5-32
[4]
Yao
W.
An approach to fuzzy frames via fuzzy posets.
Fuzzy Sets Syst,
2011, 166: 75-89
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An approach to fuzzy frames via fuzzy posets&author=Yao W&publication_year=2011&journal=Fuzzy Sets Syst&volume=166&pages=75-89
[5]
Birkhoff
G,
von
Neumann J.
The logic of quantum mechanics.
Ann Math,
1936, 379: 823-843
Google Scholar
http://scholar.google.com/scholar_lookup?title=The logic of quantum mechanics&author=Birkhoff G&author=von Neumann J&publication_year=1936&journal=Ann Math&volume=379&pages=823-843
[6]
Ying
M S.
A theory of computation based on quantum logic (I).
Theor Comput Sci,
2005, 344: 134-207
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A theory of computation based on quantum logic (I)&author=Ying M S&publication_year=2005&journal=Theor Comput Sci&volume=344&pages=134-207
[7]
Ying M S. Quantum logic and automata theory. In: Dov G, Daniel L, Kurt E, eds. Handbook of Quantum Logic and Quantum Structures. North-Holland: Elsevier, 2007. 619--754.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ying M S. Quantum logic and automata theory. In: Dov G, Daniel L, Kurt E, eds. Handbook of Quantum Logic and Quantum Structures. North-Holland: Elsevier, 2007. 619--754&
[8]
Shang
Y,
Lu
X,
Lu
R Q.
A theory of computation based on unsharp quantum logic: finite state automata and pushdown automata.
Theor Comput Sci,
2012, 434: 53-86
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A theory of computation based on unsharp quantum logic: finite state automata and pushdown automata&author=Shang Y&author=Lu X&author=Lu R Q&publication_year=2012&journal=Theor Comput Sci&volume=434&pages=53-86
[9]
Mulvey
C J.
&.
Suppl Rend Circ Mat Palermo,
1986, 12: 99-104
Google Scholar
http://scholar.google.com/scholar_lookup?title=&&author=Mulvey C J&publication_year=1986&journal=Suppl Rend Circ Mat Palermo&volume=12&pages=99-104
[10]
Abramsky
S,
Vickers
S.
Quantale, observational logic and process semantics.
Math Struct Comput Sci,
1993, 3: 161-227
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantale, observational logic and process semantics&author=Abramsky S&author=Vickers S&publication_year=1993&journal=Math Struct Comput Sci&volume=3&pages=161-227
[11]
Resende
P.
Quantales, finite observations and strong bisimulation.
Theor Comput Sci,
2001, 254: 95-149
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantales, finite observations and strong bisimulation&author=Resende P&publication_year=2001&journal=Theor Comput Sci&volume=254&pages=95-149
[12]
Li
Y M,
Li
Zh H.
Quantales and process semantics of bisimulation.
Acta Mathe Sin Chinese Ser,
1999, 42: 313-320
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantales and process semantics of bisimulation&author=Li Y M&author=Li Zh H&publication_year=1999&journal=Acta Mathe Sin Chinese Ser&volume=42&pages=313-320
[13]
Girard
J Y.
Linear logic.
Theor Comput Sci,
1987, 50: 1-102
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Linear logic&author=Girard J Y&publication_year=1987&journal=Theor Comput Sci&volume=50&pages=1-102
[14]
Yetter
D.
Quantales and noncommutative linear logic.
J Symb Logic,
1990, 55: 41-64
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantales and noncommutative linear logic&author=Yetter D&publication_year=1990&journal=J Symb Logic&volume=55&pages=41-64
[15]
Parikh
R.
Some applications of topology to program semantics.
Math Syst Theory,
1983, 16: 111-131
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Some applications of topology to program semantics&author=Parikh R&publication_year=1983&journal=Math Syst Theory&volume=16&pages=111-131
[16]
Borceux
F,
Bossche
G V.
An essay on non-commutative topology.
Topol Appl,
1989, 31: 203-223
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An essay on non-commutative topology&author=Borceux F&author=Bossche G V&publication_year=1989&journal=Topol Appl&volume=31&pages=203-223
[17]
He
W,
Luo
M K.
Quantum spaces.
Acta Math Sin English Ser,
2010, 26: 1323-1330
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum spaces&author=He W&author=Luo M K&publication_year=2010&journal=Acta Math Sin English Ser&volume=26&pages=1323-1330
[18]
Wang K Y. Some researches on fuzzy domains and fuzzy quantales. Dissertation for Ph.D. Degree. Xi'an: Shaanxi Normal University, 2012.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang K Y. Some researches on fuzzy domains and fuzzy quantales. Dissertation for Ph.D. Degree. Xi'an: Shaanxi Normal University, 2012&
[19]
Adámek J, Herrlich H, Strecker G E. Abstract and Concrete Categories. New York: Wiley, 1990.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adámek J, Herrlich H, Strecker G E. Abstract and Concrete Categories. New York: Wiley, 1990&
[20]
B\v{e}lohávek R. Fuzzy Relational Systems: Foundations and Principles. New York: Kluwer Academic Publishers, 2002.
Google Scholar
http://scholar.google.com/scholar_lookup?title=B\v{e}lohávek R. Fuzzy Relational Systems: Foundations and Principles. New York: Kluwer Academic Publishers, 2002&
[21]
Ward
M,
Dilworth
R P.
Residuated lattices.
Trans American Math Soc,
1939, 45: 335-353
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Residuated lattices&author=Ward M&author=Dilworth R P&publication_year=1939&journal=Trans American Math Soc&volume=45&pages=335-353
[22]
B\v{e}lohávek
R.
Some properties of residuated lattices.
Czechoslovak Math J,
2003, 53: 161-171
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Some properties of residuated lattices&author=B\v{e}lohávek R&publication_year=2003&journal=Czechoslovak Math J&volume=53&pages=161-171
[23]
Hájek P. Metamathematics of Fuzzy Logic. Dordrecht: Kluwer Academic Publishers, 1998.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hájek P. Metamathematics of Fuzzy Logic. Dordrecht: Kluwer Academic Publishers, 1998&
[24]
Fan
L.
A new approach to quantitative domain theory.
Electron Notes Theor Comput Sci,
2001, 45: 77-87
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A new approach to quantitative domain theory&author=Fan L&publication_year=2001&journal=Electron Notes Theor Comput Sci&volume=45&pages=77-87
[25]
Goguen
J A.
$L$-fuzzy sets.
J Math Anal Appl,
1967, 18: 145-174
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=$L$-fuzzy sets&author=Goguen J A&publication_year=1967&journal=J Math Anal Appl&volume=18&pages=145-174
[26]
Zhang
Q Y,
Fan
L.
Continuity in quantitative domains.
Fuzzy Sets Syst,
2005, 154: 118-131
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Continuity in quantitative domains&author=Zhang Q Y&author=Fan L&publication_year=2005&journal=Fuzzy Sets Syst&volume=154&pages=118-131
[27]
Zhang
Q Y,
Xie
W X,
Fan
L.
Fuzzy complete lattices.
Fuzzy Sets Syst,
2009, 160: 2275-2291
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fuzzy complete lattices&author=Zhang Q Y&author=Xie W X&author=Fan L&publication_year=2009&journal=Fuzzy Sets Syst&volume=160&pages=2275-2291
[28]
Rodabaugh S E. Powerset operator foundations for poslat fuzzy set theories and topologies. In: Höhle U, Rodabaugh S E, eds. Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, the Handbooks of Fuzzy Sets Series, vol.3. Boston, Dordrecht. London: Kluwer Academic Publishers, 1999. 91--116.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rodabaugh S E. Powerset operator foundations for poslat fuzzy set theories and topologies. In: Höhle U, Rodabaugh S E, eds. Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, the Handbooks of Fuzzy Sets Series, vol.3. Boston, Dordrecht. London: Kluwer Academic Publishers, 1999. 91--116&
[29]
Lai
H L,
Zhang
D X.
Concept lattices of fuzzy contexts: formal concept analysis vs.
rough set theory. Int J Approx Reason,
2009, 50: 695-707
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Concept lattices of fuzzy contexts: formal concept analysis vs&author=Lai H L&author=Zhang D X&publication_year=2009&journal=rough set theory. Int J Approx Reason&volume=50&pages=695-707
[30]
Stubbe
I.
Categorical structures enriched in a quantaloid: tensored and cotensored categories.
Theory Appl Categ,
2006, 16: 283-306
Google Scholar
http://scholar.google.com/scholar_lookup?title=Categorical structures enriched in a quantaloid: tensored and cotensored categories&author=Stubbe I&publication_year=2006&journal=Theory Appl Categ&volume=16&pages=283-306