SCIENCE CHINA Information Sciences, Volume 59 , Issue 4 : 042404(2016) https://doi.org/10.1007/s11432-015-5407-6

Ultralow-power high-speed flip-flop based on multimode FinFETs

More info
  • ReceivedMay 11, 2015
  • AcceptedJun 17, 2015
  • PublishedOct 12, 2015



"source" : null , "contract" : "2015CB057201"

R&D project of Shenzhen Government China(JCYJ20140417144423198)

National Natural Science Foundation of China(61306040)

National Basic Research Program of China(973)

R&D project of Shenzhen Government China(JCYJ20140417144423194)

Beijing Natural Science Foundation(4152020)


[1] Chen K T, Fujita T, Hara H, et al. A 77\. Google Scholar

[2] Kawaguchi H, Sakurai T. A reduced clock-swing flip-flop (RCSFF) for 63\. Google Scholar

[3] Alioto M, Consoli E, Palumbo G. IEEE Trans Very Large Scale Integr (VLSI) Syst, 2011, 19737-750 CrossRef Google Scholar

[4] Giacomotto C, Nedovic N, Oklobdzija V G. IEEE J Solid-State Circ, 2007, 421392-1404 CrossRef Google Scholar

[5] Furuta J, Hamanaka C, Kobayashi K, et al. A 65 nm bistable cross-coupled dual modular redundancy flip-flop capable of protecting soft errors on the c-element. In: Proceedings of VLSI Circuits Symposium, Honolulu, 2010. 123--144. Google Scholar

[6] Matush B I, Mozdzen T J, Clark L T, et al. IEEE Trans Nucl Sci, 2010, 573588-3595 Google Scholar

[7] Hwang Y T, Lin J F, Sheu M H. IEEE Trans Very Large Scale Integr (VLSI) Syst, 2012, 20361-366 CrossRef Google Scholar

[8] Li X Y, Jia S, Liu L M, et al. IEICE Trans Electron, 2012, E95-C1125-1127 CrossRef Google Scholar

[9] Kawai N, Takayama S, Masumi J, et al. A fully static topologically-compressed 21-transistor flip-flop with 75\. Google Scholar

[10] Kim Y, Arbor A, Jung W Y, et al. A static contention-free single-phase-clocked 24T flip-flop in 45nm for low-power applications. In: Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, 2014. 466--467. Google Scholar

[11] Choi Y K, Asano K, Lindert N, et al. Ultra-thin body SOI MOSFET for deep-sub-tenth micron era. In: Proceedings of IEEE International Electron Devices Meeting, Washington, 1999. 919--921. Google Scholar

[12] Kedzierski J, Nowak E, Kanarsky T, et al. Metal-gate FinFET and fully-depleted SOI devices using total gate silicidation. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2002. 247--250. Google Scholar

[13] Hisamoto D, Lee W C, Kedzierski J, et al. IEEE Trans Electron Dev, 2000, 472320-2325 CrossRef Google Scholar

[14] King T J. FinFETs for nanoscale CMOS digital integrated circuits. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design, San Jose, 2005. 207--210. Google Scholar

[15] Liao N, Cui X X, Liao K, et al. Sci China Inf Sci, 2014, 57022402-2325 Google Scholar

[16] Muttreja A, Agarwal N, Jha N K. CMOS logic design with independent-gate FinFETs. In: Proceedings of 25th International Conference on Computer Design, Lake Tahoe, 2007. 560--567. Google Scholar

[17] Nanoscale Integration and Modeling (NIMO) Group. Predictive Technology Model. http://ptm.asu.edu/. Google Scholar

[18] Trivedi V P, Fossum J G, Zhang W M. Solid State Electron, 2007, 51170-178 CrossRef Google Scholar

[19] Ma K S, Cui X X, Liao K, et al. Sci China Inf Sci, 2015, 58022403-178 Google Scholar

[20] Baccarin D, Esseni D, Alioto M. IEEE Trans VLSI Syst, 2012, 201467-1472 CrossRef Google Scholar

[21] Liao K, Cui X X, Liao N, et al. Sci China Inf Sci, 2014, 57042408-1472 Google Scholar

[22] Baccarin D, Esseni D, Alioto M. A novel back-biasing low-leakage technique for FinFET forced stacks. In: Proceedings of 2011 IEEE International Symposium on Circuits and Systems (ISCAS), Rio de Janeiro, 2011. 2079--2082. Google Scholar

[23] Massimo A. IEEE Trans Very Large Scale Integr (VLSI) Syst, 2011, 19751-762 CrossRef Google Scholar

[24] Cui X X, Ma K S, Liao K, et al. A Dynamic-adjusting threshold-voltage scheme for FinFETs low power designs. In: Proceedings of IEEE Int Symp on Circuits and Systems, Beijing, 2013. 129--132. Google Scholar


Contact and support