logo

SCIENCE CHINA Information Sciences, Volume 59 , Issue 4 : 042405(2016) https://doi.org/10.1007/s11432-015-5400-0

Novel wavelet neural network algorithm for continuous and noninvasive dynamic estimation of blood pressure from photoplethysmography

More info
  • ReceivedMay 10, 2015
  • AcceptedJun 18, 2015
  • PublishedSep 25, 2015

Abstract


Funded by

National Basic Research Program of China(973)

(2011CB933203)

Grant for Capital Clinical Application Research with Characteristics(Grants No. Z14110700251- 4061)

National Natural Science Foundation of China(61474107)

National Natural Science Foundation of China(61372060)

National Natural Science Foundation of China(61335010)

National Natural Science Foundation of China(61275200)

National Natural Science Foundation of China(61178051)

National Natural Science Foundation of China(81300803)

National High-Tech Research & Development Program of China(863)

(Grants No. 2014AA032901)


Acknowledgment

Acknowledgments

This work was supported by National Basic Research Program of China (973) (Grant No. 2011CB933203), National Natural Science Foundation of China (Grant Nos. 61474107, 61372060, 61335010, 61275200, 61178051, 81300803), National High-Tech Research & Development Program of China (863) (Grants No. 2014AA032901), Grant for Capital Clinical Application Research with Characteristics (Grants No. Z14110700251- 4061).


References

[1] Zhang X, Pei W H, Huang B J, et al. Sci China Inf Sci, 2012, 55: 441-452 Google Scholar

[2] Zhang X, Pei W H, Huang B J, et al. Sci China Inf Sci, 2011, 54: 898-908 Google Scholar

[3] Xu Z, Ming L, Bo W, et al. IEEE Trans Circuits Syst I: Regular Papers, 2014, 61: 2-11 Google Scholar

[4] Wang Y, Zhang X, Liu M, et al. IEICE Trans Inform Syst, 2014, 97-D: 2790-2801 Google Scholar

[5] Hu X H, Zhang X, Liu M, et al. Sci China Inf Sci, 2014, 57: 120204-2801 Google Scholar

[6] Ye Y L, Sheu P C-Y, Zeng J Z, et al. Sci China Ser F-Inf Sci, 2009, 52: 1863-1874 Google Scholar

[7] Wang G, Rao N N, Zhang Y, et al. Sci China Ser F-Inf Sci, 2008, 51: 1572-1584 Google Scholar

[8] An J, Lee J H, Ahn C W. Sci China Inf Sci, 2013, 56: 109201-1584 Google Scholar

[9] Li P, Liu M, Zhang X, et al. Sci China Inf Sci, 2014, 57: 122303-1584 Google Scholar

[10] Zorn E A, Wilson M B, Angel J J, et al. Blood Pressure Monitor, 1997, 2: 185-188 Google Scholar

[11] Miyauchi Y, Koyama S, Ishizawa H. Basic experiment of bloodpressure measurement which uses FBG sensors. In: Proceedings of the IEEE International Conference on Instrumentation and Measurement Technology, Minneapolis, 2013. 1767--1770. Google Scholar

[12] Newlin D B. Phychophysiology, 1981, 18: 316-321 Google Scholar

[13] Lane J D, Greenstadt L, Shapiro D. Phychophysiology, 1983, 20: 45-49 Google Scholar

[14] Xiaochuan H, Goubran R A, Liu X P. Evaluation of the correlation between blood pressure and pulse transit time. In: Proceedings of the IEEE International Conference on Medical Measurements and Applications Proceedings, Gatineau, 2013. 17--20. Google Scholar

[15] Chen Y, Wen C, Tao G, et al. Ann Biomed Eng, 2012, 40: 871-882 Google Scholar

[16] Li Y J, Wang Z L, Zhang L, et al. Australas Phys Eng Sci, 2014, 37: 367-376 Google Scholar

[17] Teng X F, Zhang Y T. Continuous and noninvasive estimation of arterial blood pressure using a photoplethysmographic approach. In: Proceedings of the IEEE International Conference on Medicine and Biology Society, Cancun, 2003. 3153--3156. Google Scholar

[18] Yoon Y, Yoon G. J Opt Soc Korea, 2006, 10: 91-95 Google Scholar

[19] Fortino G, Giampà V. PPG-based methods for non invasive and continuous BP measurement: an overview and development issues in body sensor networks. In: Proceedings of the IEEE International Conference on Medical Measur, Ottawa, 2010. 10--13. Google Scholar

[20] Kurylyak Y, Lamonaca F, Grimaldi D. A neural network-based method for continuous blood pressure estimation from a PPG signal. In: Proceedings of the IEEE International Conference on Instrumentation and Measurement Technology, Minneapolis, 2013. 280--283. Google Scholar

[21] Boggess A, Narcowich F J. A First Course in Wavelets with Fourier Analysis. Hoboken: Wiley, 2001. Google Scholar

[22] Qinghua Z. IEEE Trans Neural Networks, 1997, 8: 227-236 Google Scholar

[23] George B M, Roger G M. A database to support development and evaluation of intelligent intensive care monitoring. In: Proceedings of the IEEE International Conference on Computers in Cardiology, Indianapolis, 1996. 657--660. Google Scholar

[24] Hornik K. Neural Netw, 1989, 2: 183-192 Google Scholar

[25] Barron A. IEEE Trans Inform Theory, 1993, 39: 930-945 Google Scholar

[26] Poggio T, Girosi F. Proc IEEE, 1990, 78: 1481-1497 Google Scholar

[27] Zhang Q, Benveniste A. IEEE Trans Neural Netw, 1992, 3: 889-898 Google Scholar

[28] Zhang J, Walter G G, Miao Y, et al. IEEE Trans Signal Process, 1995, 43: 1485-1497 Google Scholar

[29] Igel C, Husken M. Neurocomputing, 2003, 50: 105-123 Google Scholar

[30] Rusiecki A. Neural Process Lett, 2012, 36: 145-160 Google Scholar

[31] American National Standard. Electronic or Automated Sphygmomanometers. ANSI/AAMI SP10, Association for the Advancement of Medical Instrumentation, Arlington, 1992. Google Scholar

[32] Younhee C, Qiao Z, Seokbum K. Comput Electr Eng, 2013, 39: 103-111 Google Scholar