logo

SCIENCE CHINA Information Sciences, Volume 59 , Issue 4 : 042402(2016) https://doi.org/10.1007/s11432-015-5362-2

Single event upset rate modeling for ultra-deep submicron complementary metal-oxide-semiconductor devices

More info
  • ReceivedJan 18, 2015
  • AcceptedApr 27, 2015
  • PublishedMar 1, 2016

Abstract


Funded by

national Natural Science Foundation of China(61106062)


References

[1] McMorrow D, Khachatrian A, Roche N J-H, et al. IEEE Trans Nucl Sci, 2013, 60: 4184-4191 CrossRef Google Scholar

[2] He Y B, Chen S M. Sci China Inf Sci, 2014, 57: 102405-4191 Google Scholar

[3] Wang Z M, Yao Z B, Guo H X, et al. Sci China Inf Sci, 2012, 55: 971-982 CrossRef Google Scholar

[4] Moukhtari I E, Pouget V, Larue C, et al. Microelectron Rel, 2013, 53: 1325-1328 CrossRef Google Scholar

[5] Petersen E L, Koga R, Shoga M A, et al. IEEE Trans Nucl Sci, 2013, 60: 1824-1835 CrossRef Google Scholar

[6] Raine M, Hubert G, Paillet P, et al. IEEE Trans Nucl Sci, 2012, 59: 950-957 CrossRef Google Scholar

[7] Amusan O A, Witulski A F, Massengill L W, et al. IEEE Trans Nucl Sci, 2006, 53: 3253-3258 CrossRef Google Scholar

[8] Amusan O A, Massengill L W, Baze M P, et al. IEEE Trans Dev Mater Rel, 2008, 8: 582-589 CrossRef Google Scholar

[9] Blum D R. Hardened by design approaches for mitigating transient faults in memory-based systems. Dissertation for the Doctoral Degree. Pullman: Washington State University, 2007. Google Scholar

[10] Tipton A D, Pellish J A, Reed R A, et al. IEEE Trans Nucl Sci, 2006, 53: 3259-3264 CrossRef Google Scholar

[11] Connel L W, McDaniel P J, Prinja A K, et al. IEEE Trans Nucl Sci, 1995, 42: 73-82 CrossRef Google Scholar

[12] Connell L W, Sexton F W, Prinja A K. IEEE Trans Nucl Sci, 1995, 42: 2026-2034 CrossRef Google Scholar

[13] Foro L L, Touboul A D, Wrobel F, et al. IEEE Trans Nucl Sci, 2013, 60: 2559-2566 CrossRef Google Scholar

[14] Warren K W, Wilkinson J D, Weller R A, et al. Predicting neutron induced soft error rates: evaluation of accelerated ground based test methods. In:~Proceedings of IEEE International Reliability Physics Symposium, Phoenix, 2008. 473--477. Google Scholar

[15] Warren K M, Sierawski B D, Reed R A, et al. IEEE Trans Nucl Sci, 2007, 54: 2419-2425 CrossRef Google Scholar

[16] Warren K M, Weller R A, Sierawski B D, et al. 25 $upmu$m CMOS SRAM. IEEE Trans Nucl Sci, 2007, 54: 898-903 CrossRef Google Scholar

[17] Warren K M, Sternberg A L, Weller R A, et al. IEEE Trans Nucl Sci, 2008, 55: 2886-2894 CrossRef Google Scholar

[18] Hubert G, Duzellier S, Inguimbert C, et al. IEEE Trans Nucl Sci, 2009, 56: 3032-3042 CrossRef Google Scholar

[19] Petersen E L. IEEE Trans Nucl Sci, 1996, 43: 952-959 CrossRef Google Scholar

[20] Petersen E L. IEEE Trans Nucl Sci, 1998, 45: 2550-2562 CrossRef Google Scholar

[21] Roche P, Gasiot G, Uznanski S, et al. A commercial 65nm CMOS technology for space applications: heavy ion, proton and gamma test results and modeling. In:~Proceedings of European Conference on Radiation and Its Effects on Components and Systems, Bruges, 2009. 456--464. Google Scholar

[22] Petersen E L, Shapiro P, Adams J H, et al. IEEE Trans Nucl Sci, 1982, 29: 2055-2063 CrossRef Google Scholar

[23] Hubert G, Bourdarie S, Artola L, et al. Acta Astronaut, 2011, 69: 526-536 CrossRef Google Scholar

[24] Hazucha P, Svensson C. IEEE Trans Nucl Sci, 2000, 47: 2586-2594 CrossRef Google Scholar

[25] Amusan O A, Massengill L W, Baze M P, et al. IEEE Trans Dev Mater Rel, 2008, 8: 582-589 CrossRef Google Scholar

[26] Giot D, Roche P, Gasiot G, et al. IEEE Trans Nucl Sci, 2007, 54: 904-911 CrossRef Google Scholar