References
[1]
Zhang
C L,
Jing
Z L,
Tang
Y P, et al.
IET Comput Vis,
2013, 7: 151-162
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Zhang C L&author=Jing Z L&author=Tang Y P&publication_year=2013&journal=IET Comput Vis&volume=7&pages=151-162
[2]
Xu
M,
Ellis
T,
Godsill
S J, et al.
IET Comput Vis,
2011, 5: 1
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Xu M&author=Ellis T&author=Godsill S J&publication_year=2011&journal=IET Comput Vis&volume=5&pages=1
[3]
Mei
X,
Ling
H.
IEEE Trans Pattern Anal Mach Intell,
2011, 33: 2259
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Mei X&author=Ling H&publication_year=2011&journal=IEEE Trans Pattern Anal Mach Intell&volume=33&pages=2259
[4]
Li H, Shen C, Shi Q. Real-time visual tracking using compressive sensing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, 2011. 1305--1312.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li H, Shen C, Shi Q. Real-time visual tracking using compressive sensing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, 2011. 1305--1312&
[5]
Babenko
B,
Yang
M H,
Belongie
S.
IEEE Trans Pattern Anal Mach Intell,
2011, 33: 1619
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Babenko B&author=Yang M H&author=Belongie S&publication_year=2011&journal=IEEE Trans Pattern Anal Mach Intell&volume=33&pages=1619
[6]
Zhang
K H,
Zhang
L.
IEEE Trans Image Process,
2013, 22: 4664
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Zhang K H&author=Zhang L&publication_year=2013&journal=IEEE Trans Image Process&volume=22&pages=4664
[7]
Lei
Y,
Ding
X Q,
Wang
S J.
IEEE Trans Syst Man Cybern Part B-Cybern,
2008, 38: 1578-1591
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Lei Y&author=Ding X Q&author=Wang S J&publication_year=2008&journal=IEEE Trans Syst Man Cybern Part B-Cybern&volume=38&pages=1578-1591
[8]
Dinh T B, Medioni G. Co-training framework of generative and discriminative trackers with partial occlusion handling. In: Proceedings of the IEEE Workshop on Applications of Computer Vision, Kona, 2011. 642--649.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dinh T B, Medioni G. Co-training framework of generative and discriminative trackers with partial occlusion handling. In: Proceedings of the IEEE Workshop on Applications of Computer Vision, Kona, 2011. 642--649&
[9]
Zhang K H, Zhang L. Real-time compressive tracking. In: Proceedings of European Conference on Computer Vision, Firenze, 2012. 866--879.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang K H, Zhang L. Real-time compressive tracking. In: Proceedings of European Conference on Computer Vision, Firenze, 2012. 866--879&
[10]
Zhu
Q P,
Yan
J,
Deng
D X.
IET Comput Vis,
2013, 7: 448-455
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Zhu Q P&author=Yan J&author=Deng D X&publication_year=2013&journal=IET Comput Vis&volume=7&pages=448-455
[11]
Zhou
P,
Yao
J H,
Pei
J L.
Sci China Ser-F: Inf Sci,
2009, 52: 1632-1639
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Zhou P&author=Yao J H&author=Pei J L&publication_year=2009&journal=Sci China Ser-F: Inf Sci&volume=52&pages=1632-1639
[12]
Mihaylova L, Loza A, Nikolov S. The influences of multi-sensor video fusion on object tracking using a particle filter. In: Proceedings of Workshop on Multiple Sensor Data Fusion, Dresden, 2006. 354--358.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mihaylova L, Loza A, Nikolov S. The influences of multi-sensor video fusion on object tracking using a particle filter. In: Proceedings of Workshop on Multiple Sensor Data Fusion, Dresden, 2006. 354--358&
[13]
Cvejic N, Nikolov S G, Knowles H, et al. The effect of pixel-level fusion on object tracking in multi-sensor surveillance video. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, Minneapolis, 2007. 1--7.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cvejic N, Nikolov S G, Knowles H, et al. The effect of pixel-level fusion on object tracking in multi-sensor surveillance video. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, Minneapolis, 2007. 1--7&
[14]
Xiao G, Yun X, Wu J M. A new tracking approach for visible and infrared sequences based on tracking-before-fusion. Int J Dynam Control, 2014, 1--12.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xiao G, Yun X, Wu J M. A new tracking approach for visible and infrared sequences based on tracking-before-fusion. Int J Dynam Control, 2014, 1--12&
[15]
Torresan H, Turgeon B, Ibarra C, et al. Advanced surveillance system: combining video and thermal imagery for pedestrian detection. In: Proceedings of the International Society for Optical Engineering, Beijing, 2004. 506--515.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Torresan H, Turgeon B, Ibarra C, et al. Advanced surveillance system: combining video and thermal imagery for pedestrian detection. In: Proceedings of the International Society for Optical Engineering, Beijing, 2004. 506--515&
[16]
Stolkin R, Rees D, Talha, M, et al. Bayesian fusion of thermal and visible spectra camera data for region based tracking with rapid background adaptation. In: Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Hamburg, 2012. 192--199.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stolkin R, Rees D, Talha, M, et al. Bayesian fusion of thermal and visible spectra camera data for region based tracking with rapid background adaptation. In: Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Hamburg, 2012. 192--199&
[17]
Chen S, Zhu W, Leung H. Thermo-visual video fusion using probabilistic graphical model for human tracking. In: IEEE International Symposium on Circuits and Systems, Seattle, 2008. 1926--1929.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen S, Zhu W, Leung H. Thermo-visual video fusion using probabilistic graphical model for human tracking. In: IEEE International Symposium on Circuits and Systems, Seattle, 2008. 1926--1929&
[18]
Perez
P,
Vermaak
J,
Blake
A.
Proc IEEE,
2004, 92: 495-513
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Perez P&author=Vermaak J&author=Blake A&publication_year=2004&journal=Proc IEEE&volume=92&pages=495-513
[19]
Topkaya I S, Erdogan H. Histogram correlation based classifier fusion for object tracking. In: Proceedings of the IEEE 19th Signal Processing and Communications Applications Conference, Xi'an, 2011. 403--406.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Topkaya I S, Erdogan H. Histogram correlation based classifier fusion for object tracking. In: Proceedings of the IEEE 19th Signal Processing and Communications Applications Conference, Xi'an, 2011. 403--406&
[20]
Liu H P, Sun F C. Fusion tracking in color and infrared images using sequential belief propagation. In: Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, 2008. 2259--2264.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu H P, Sun F C. Fusion tracking in color and infrared images using sequential belief propagation. In: Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, 2008. 2259--2264&
[21]
Xiao
G,
Yun
X,
Wu
J M.
Sci China Inf Sci,
2012, 55: 577-589
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Xiao G&author=Yun X&author=Wu J M&publication_year=2012&journal=Sci China Inf Sci&volume=55&pages=577-589
[22]
Wen L G, Cai Z W, Lei Z, et al. Online spatio-temporal structure context learning for visual tracking. In: Proceedings of European Conference on Computer Vision, Firenze, 2012. 716--729.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wen L G, Cai Z W, Lei Z, et al. Online spatio-temporal structure context learning for visual tracking. In: Proceedings of European Conference on Computer Vision, Firenze, 2012. 716--729&
[23]
Sigal L, Zhu Y, Comaniciu D, et al. Tracking complex objects using graphical object models. In: Proceedings of 1st International Workshop Complex Motion, Gunzburg, 2004. 223--234.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sigal L, Zhu Y, Comaniciu D, et al. Tracking complex objects using graphical object models. In: Proceedings of 1st International Workshop Complex Motion, Gunzburg, 2004. 223--234&
[24]
Wen
L G,
Cai
Z W,
Lei
Z, et al.
IEEE Trans Image Process,
2014, 23: 785-796
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Wen L G&author=Cai Z W&author=Lei Z&publication_year=2014&journal=IEEE Trans Image Process&volume=23&pages=785-796
[25]
Zhang K H, Zhang L, Liu Q, et al. Fast tracking via dense spatio-temporal context learning. In: Proceedings of European Conference on Computer Vision, Zurich, 2014. 1--15.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang K H, Zhang L, Liu Q, et al. Fast tracking via dense spatio-temporal context learning. In: Proceedings of European Conference on Computer Vision, Zurich, 2014. 1--15&
[26]
Kim
D,
Jeon
M.
IEEE Trans Image Process,
2013, 22: 511-522
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Kim D&author=Jeon M&publication_year=2013&journal=IEEE Trans Image Process&volume=22&pages=511-522
[27]
Shafiee M J, Azimifar Z, Fieguth P. Model-based tracking: temporal conditional random fields. In: Proceedings of the IEEE International Conference on Image Processing, Hong Kong, 2010. 4645--4648.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shafiee M J, Azimifar Z, Fieguth P. Model-based tracking: temporal conditional random fields. In: Proceedings of the IEEE International Conference on Image Processing, Hong Kong, 2010. 4645--4648&
[28]
Shafiee M J, Azimifar Z, Fieguth P. Temporal conditional random fields: a conditional state space predictor for visual tracking. In: Proceedings of the Iranian Conference on Machine Vision and Image Processing, Isfahan, 2010. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shafiee M J, Azimifar Z, Fieguth P. Temporal conditional random fields: a conditional state space predictor for visual tracking. In: Proceedings of the Iranian Conference on Machine Vision and Image Processing, Isfahan, 2010. 1--6&
[29]
Li
X,
Dick
A,
Shen
C, et al.
IEEE Trans Image Process,
2013, 22: 3028-3040
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Li X&author=Dick A&author=Shen C&publication_year=2013&journal=IEEE Trans Image Process&volume=22&pages=3028-3040
[30]
Lazaridis
G,
Petrou
M.
IEEE Trans Image Process,
2006, 15: 2343-2357
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Lazaridis G&author=Petrou M&publication_year=2006&journal=IEEE Trans Image Process&volume=15&pages=2343-2357
[31]
Bay H, Tuvtellars T, Gool L V. SURF: speeded up robust features. In: Proceedings of European Conference on Computer Vision, Graz, 2006. 404--417.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bay H, Tuvtellars T, Gool L V. SURF: speeded up robust features. In: Proceedings of European Conference on Computer Vision, Graz, 2006. 404--417&
[32]
Abdel-Hakim A E, Farag A A. CSIFT: a SIFT descriptor with color invariant characteristics. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, 2006. 1978--1983.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Abdel-Hakim A E, Farag A A. CSIFT: a SIFT descriptor with color invariant characteristics. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, 2006. 1978--1983&
[33]
Achlioptas
D.
J Comput Syst Sci,
2003, 66: 671-687
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Achlioptas D&publication_year=2003&journal=J Comput Syst Sci&volume=66&pages=671-687
[34]
Ng A, Jordan M. On discriminative vs. generative classifier: a comparison of logistic regression and naive bayes. In: Proceedings of the Conference on Neural Information Processing Systems, 2002. 841--848.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ng A, Jordan M. On discriminative vs. generative classifier: a comparison of logistic regression and naive bayes. In: Proceedings of the Conference on Neural Information Processing Systems, 2002. 841--848&
[35]
Soundararajan R, Bovik A C. Video quality assessment using spatio-temporal entropic differences. In: Proceedings of the IEEE International Conference on Image Processing, Orlando, 2012. 684--694.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Soundararajan R, Bovik A C. Video quality assessment using spatio-temporal entropic differences. In: Proceedings of the IEEE International Conference on Image Processing, Orlando, 2012. 684--694&
[36]
Mehrseresht
N,
Taubman
D.
IEEE Trans Image Process,
2006, 15: 1397-1412
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Mehrseresht N&author=Taubman D&publication_year=2006&journal=IEEE Trans Image Process&volume=15&pages=1397-1412
[37]
Cehovin L, Kristan M, Leonardis A. An adaptive coupled-layer visual model for robust visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, Barcelona, 2011. 1363--1370.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cehovin L, Kristan M, Leonardis A. An adaptive coupled-layer visual model for robust visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, Barcelona, 2011. 1363--1370&
[38]
Deza E, Deza M M. Encyclopedia of Distances. Berlin/Heidelberg: Springer, 2009. 94--95.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deza E, Deza M M. Encyclopedia of Distances. Berlin/Heidelberg: Springer, 2009. 94--95&
[39]
Lu G, Zhao W, Sun J P, et al. A novel particle filter for target tracking in wireless sensor network. In: Proceedings of the IET International Radar Conference, 2013. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lu G, Zhao W, Sun J P, et al. A novel particle filter for target tracking in wireless sensor network. In: Proceedings of the IET International Radar Conference, 2013. 1--6&
[40]
Vaswani N. Kalman filtered compressed sensing. In: Proceedings of the IEEE International Conference on Image Processing, San Diego, 2008. 893--896.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Vaswani N. Kalman filtered compressed sensing. In: Proceedings of the IEEE International Conference on Image Processing, San Diego, 2008. 893--896&
[41]
Jayamohan S, Mathurakani M. Noise tolerance analysis of marginalized particle filter for target tracking. In: Proceedings of the Annual International Conference on Microelectronics, Communications and Renewable Energy, Kanjirapally, 2013. 1--6.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jayamohan S, Mathurakani M. Noise tolerance analysis of marginalized particle filter for target tracking. In: Proceedings of the Annual International Conference on Microelectronics, Communications and Renewable Energy, Kanjirapally, 2013. 1--6&
[42]
Simon
D.
Neurocomputing,
2002, 48: 455-475
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Simon D&publication_year=2002&journal=Neurocomputing&volume=48&pages=455-475
[43]
Wang X Q, Wang X L. The comparison of particle filter and extended Kalman filter in predicting building envelope heat transfer coefficient. In: Proceedings of the IEEE International Conference on Cloud Computing and Intelligence Systems, Hangzhou, 2012. 1524--1528.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang X Q, Wang X L. The comparison of particle filter and extended Kalman filter in predicting building envelope heat transfer coefficient. In: Proceedings of the IEEE International Conference on Cloud Computing and Intelligence Systems, Hangzhou, 2012. 1524--1528&
[44]
Bingham E, Mannila H. Random projection in dimensionality reduction: applications to image and text data. In: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 2001. 245--250.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bingham E, Mannila H. Random projection in dimensionality reduction: applications to image and text data. In: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 2001. 245--250&
[45]
Candes
E,
Tao
T.
IEEE Trans Inform Theory,
2006, 52: 5406-5425
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Candes E&author=Tao T&publication_year=2006&journal=IEEE Trans Inform Theory&volume=52&pages=5406-5425
[46]
Jiang
N,
Liu
W Y,
Wu
Y.
IEEE Trans Image Process,
2011, 20: 2288
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?author=Jiang N&author=Liu W Y&author=Wu Y&publication_year=2011&journal=IEEE Trans Image Process&volume=20&pages=2288