logo

SCIENCE CHINA Earth Sciences, Volume 63 , Issue 2 : 188-201(2020) https://doi.org/10.1007/s11430-019-9521-8

Latest Middle Miocene fauna and flora from Kumkol Basin of northern Qinghai-Xizang Plateau and paleoenvironment

Qiang LI 1,2,3,4,*, Xinying ZHOU 1,2, Xijun NI 1,2,3,4,†, Bihong FU 3,5, Tao DENG 1,2,3,4
More info
  • ReceivedMay 30, 2019
  • AcceptedSep 26, 2019
  • PublishedNov 11, 2019

Abstract


Funding

the Strategic Priority Research Program of Chinese Academy of Sciences(Grant,Nos.,XDB26030304,XDB26030300,XDA20070203,&,XDA19050100)

National Natural Science Foundation of China(Grant,No.,41625005)


Acknowledgment

We gratefully acknowledge all the field personnel during four filed seasons over the past years. We are deeply indebted to the following individuals: Dr. Miao Yunfa from the CAREERI, Dr. Shi Pilong, Dr. Xue Guoliang and Dr. Ma Yuanxu from the CEODE of the CAS, and Dr. Lu Haijian from the IG of the CAGS. We also would like to express our gratitude to Prof. Qiu Zhuding, Prof. Wu Wenyu, Dr. Lu Xiaoyu and Dr. Yang Yangheshan for their valuable discussion of the identification for rodents. We thank Dr. Wang Xiaoming from the Natural History Museum of Los Angeles County for his critique of our manuscript. This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB26030304, XDB26030300, XDA20070203 & XDA19050100) and the National Natural Science Foundation of China (Grant No. 41625005).


References

[1] Aguilar J P, Clauzon G. 1979. Un gisement à mammifères dans la formation lacustre d’âge Miocène moyen du Collet Redon près de St-Cannat (Bouches-du-Rhone). Implications stratigraphiques. Palaeoverterata, 8: 327–341. Google Scholar

[2] Böhme M. The Miocene climatic optimum: Evidence from ectothermic vertebrates of Central Europe. Palaeogeogr Palaeoclimatol Palaeoecol, 2003, 195389-401 CrossRef ADS Google Scholar

[3] Chang M M, Wang X M, Liu H Z, Miao D S, Zhao Q H, Wu G X, Liu J, Li Q, Sun Z C, Wang N. Extraordinarily thick-boned fish linked to the aridification of the Qaidam Basin (northern Tibetan Plateau). Proc Natl Acad Sci USA, 2008, 10513246-13251 CrossRef PubMed ADS Google Scholar

[4] Chen X H, Dang Y Q, Yin A, Wang L Q, Jiang W M, Jiang R B, Zhou S P, Liu M D, Ye B Y, Zhang M, Ma L X, Li L. 2010. The Coupling and Tectonics Evolution of Qaidam Basin and Its Surrounding Mountains (in Chinese). Beijing: Geological Publishing House. 365. Google Scholar

[5] Cuenca G B. 1988. Revision de los Sciuridae del Aragoniense y del Rambliense en la fosa de Calatayud-Montalban. Scripta Geol, 87: 1–114. Google Scholar

[6] Daams R. 1999. Peridyromys darocensis and Peridyromys sondaari, two new species of Gliridae (Rodentia, Mammalia) from the Lower Miocene (MN3-5) of the Calatayud-Daroca Basin, Zaragoza, Spain. In: Reumer J W F, De Vos J, eds. Elephants Have a Snorkel! Papers in Honour of Pauly Sondaar. Deinsea, 7: 83–90. Google Scholar

[7] De Bruijn H. 1995. The vertebrate locality of Maramena (Macedonia, Greece) at the Turolian-Ruscinian Boundary (Neogene). 8. Sciuridae, Petauristinae and Eomyidae (Rodentia, Mammlia). Munchen Geowiss Abh, Reihe A, 28: 87–102. Google Scholar

[8] De Bruijn H. 1999. Superfamily Sciuroidea. In: Rössner G E, Hsissig K, eds. The Miocene Land Mammals of Europe. München: Verlag Dr. Friedrich Pfeil Press. 271–280. Google Scholar

[9] De Bruijn H, Mein P. 1968. On the mammalian fauna of the Hipparion-beds in the Calatayud-Teruel Basin (Prov. Zaragoza, Spain): Part V, the Sciurinae. Proc Kon Ned Akad Wetensch Ser B, 71: 73–90. Google Scholar

[10] De Bruijn H, Dawson M R, Mein P. 1970. Upper Pliocene Rodentia, Lagomorpha and Insectivora (Mammalia) from the Isle of Rhodes (Greece). I, II and III. Proc Kon Ned Akad Wetensch Ser B. 73: 536–584. Google Scholar

[11] Deng T, Ding L. Paleoaltimetry reconstructions of the Tibetan Plateau: Progress and contradictions. Natl Sci Rev, 2015, 2417-437 CrossRef Google Scholar

[12] Deng T, Wang X M, Wu F X, Wang Y, Li Q, Wang S Q, Hou S K. Review: Implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau. Glob Planet Change, 2019, 17458-69 CrossRef ADS Google Scholar

[13] Faegri K, Kaland P E, Krzywinski K. 1989. Textbook of Pollen Analysis. 4th ed. New York: John Wiley & Sons Chichester. 340. Google Scholar

[14] Fahlbusch V Z, Qiu Z D, Sotrch G. 1984. Neogene micromammal from Inner Mongolia: Recent investigations on biostratigrahy, ecology and biogeography. In: Whyte R O, ed. The Evolution of the East Asian Environment: Volume II, Palaeobotany, Palaeozoology, and Palaeoanthropology. Hong Kong: University of Hong Kong. 697–707. Google Scholar

[15] Feng Z J. 1990. On the status and conservation of the wild animal resources in the Karkorum-Kunlun Mountains region, China (in Chinese). J Nat Resour, 5: 343–353. Google Scholar

[16] Feng Z J, Cai G Q, Zheng C L. 1986. The Mammals of Xizang (in Chinese). Beijing: Science Press. 423. Google Scholar

[17] Flower B P, Kennett J P. The Middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr Palaeoclimatol Palaeoecol, 1994, 108537-555 CrossRef ADS Google Scholar

[18] Freudenthal M, Martín-Suárez E. 2013. New ideas on the systematics of Gliridae (Rodentia, Mammalia). Span J Palaeont, 28: 239–252. Google Scholar

[19] Gao Z J, Chen K Q, Gao L Z. 2014a. Dictionary of the Lithostratigraphic Unit of China (Volume I) (in Chinese). Chengdu: University of Electronic Science and Technology of China Press. 646. Google Scholar

[20] Gao Z J, Chen K Q, Gao L Z. 2014b. Dictionary of the Lithostratigraphic Unit of China (Volume II) (in Chinese). Chengdu: University of Electronic Science and Technology of China Press. 700. Google Scholar

[21] Gao Z J, Wu N Y, Wang A M, Wu S Z. 1981. Regional Stratigraphic Chart of Northwestern China. Fascicle Xijiang Uygur Autonomous Region (in Chinese). Beijing: Geological Publishing House. 496. Google Scholar

[22] Gradstein F M, Ogg J G, Schmitz M D, Ogg G M. 2012. The Geologic Time Scale 2012 Volume 2. Oxford: Elsevier. 1144. Google Scholar

[23] Guangxi Zhuang Autonomous Region Geological Survey. 2003. People’s Republic of China Regional Geological Survey. Scale 1: 250000 The Altyn Tagh Area (J45C003003) (in Chinese). Beijing: China Geological Survey. 490. Google Scholar

[24] Holbourn A, Kuhnt W, Schulz M, Erlenkeuser H. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature, 2005, 438483-487 CrossRef PubMed ADS Google Scholar

[25] Hoorn C, Straathof J, Abels H A, Xu Y, Utescher T, Dupont-Nivet G. A late Eocene palynological record of climate change and Tibetan Plateau uplift (Xining Basin, China). Palaeogeogr Palaeoclimatol Palaeoecol, 2012, 344-34516-38 CrossRef ADS Google Scholar

[26] Jin C Z, Wang F Z. 2009. Chapter IV, section II, Order Chiroptera. In: Jin C Z, Liu J Y eds. Paleolithic Site-The Renzidong Cave, Fanchang, Anhui Province (in Chinese). Beijing: Science Press. 123–155. Google Scholar

[27] Kälin D. 1999. Tribe Cricetini. In: Rössner G E, Hsissig K, eds. The Miocene Land Mammals of Europe. München: Verlag Dr. Friedrich Pfeil Press. 373–387. Google Scholar

[28] Kaya F, Kaymakçı N. Systematics and dental microwear of the late Miocene Gliridae (Rodentia, Mammalia) from Hayranlı, Anatolia: Implications for paleoecology and paleobiodiversity. Palaeontol Electron, 2013, 1621A CrossRef Google Scholar

[29] Kordikova E G, Heizmann E P J, de Bruijn H. Early-Middle Miocene vertebrate faunas from Western Kazakhstan. Part 1. Rodentia, Insectivora, Chiroptera, and Lagomorpha. N Jb Geol Paläont Abh, 2004, 231219-276 CrossRef Google Scholar

[30] Lear C H, Mawbey E M, Rosenthal Y. Cenozoic benthic foraminiferal Mg/Ca and Li/Ca records: Toward unlocking temperatures and saturation states. Paleoceanography, 2010, 25PA4215 CrossRef ADS Google Scholar

[31] Li D H, Wang Z X, Wu Y F, Zheng C L, Huang Y Z, Cai G Q, Liao Y F, Wang Y X, Guo J T. 1989. The Qinghai Economic Wildlife (in Chinese). Xining: Qinghai People’s Publishing House. 735. Google Scholar

[32] Li Q, Qiu Z D. 2005. Restudies in Sminthoides Schlosser, a fossil genus of three-toed jerboa from China (in Chinese). Vert PalAsiat, 43: 24–35. Google Scholar

[33] Li Q, Wang X, Xie G, Yin A, Dodson P. Oligocene-Miocene mammalian fossils from Hongyazi Basin and its bearing on tectonics of Danghe Nanshan in Northern Tibetan Plateau. PLoS ONE, 2013, 8e82816 CrossRef PubMed ADS Google Scholar

[34] Li Q, Zheng S H. 2005. Note on four species of dipodids (Dipodidae, Rodentia) from the Late Miocene Bahe Formation, Lantian, Shaanxi (in Chinese). Vert PalAsiat, 43: 283–296. Google Scholar

[35] Li X Q, Shang X, Zhou X Y, Zhang H B. 2006. Integrative method of sieving and heavy liquid in pollen analysis of loess—Data Analysis and processing (in Chinese). Arid Land Geogr, 29: 663–667. Google Scholar

[36] Liu L P, Zhang Z Q, Cui N, Fortelius M. 2008. The Dipodidae (Jerboas) from Loc. 30 of Baode and their environmental significance. Vert PalAsiat, 46: 124–132. Google Scholar

[37] Lu H J, Fu B H, Shi P L, Y X, Li H B. Constraints on the uplift mechanism of northern Tibet. Earth Planet Sci Lett, 2016, 453108-118 CrossRef ADS Google Scholar

[38] Lu H Y, Wu N Q, Yang X D, Shen C M, Zhu L P, Wang L, Li Q, Xu D K, Tong G B, Sun X J. Spatial pattern of Abies and Picea surface pollen distribution along the elevation gradient in the Qinghai-Tibetan Plateau and Xinjiang, China. Boreas, 2008, 37254-262 CrossRef Google Scholar

[39] Lu H Y, Wu N Q, Liu K, Zhu L P, Yang X D, Yao T D, Wang L, Li Q, Liu X Q, Shen C M, Li X Q, Tong G B, Jiang H. Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes. Quat Sci Rev, 2011, 30947-966 CrossRef ADS Google Scholar

[40] Maridet O, Wu W Y, Ye J, Bi S D, Ni X J, Meng J. 2011. Earliest occurrence of Democricetodon in China, in the early Miocene of the Junggar Basin (Xinjiang), and comparison with the genus Spanocricetodon. Vert PalAsiat, 49: 393–405. Google Scholar

[41] McKenna M C, Bell S K. 1997. Classification of Mammals above the Species Level. New York: Columbia University Press. 631. Google Scholar

[42] Miao Y, Fang X, Herrmann M, Wu F, Zhang Y, Liu D. Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan Plateau and implications for evolution of the East Asian monsoon. Palaeogeogr Palaeoclimatol Palaeoecol, 2011, 29930-38 CrossRef ADS Google Scholar

[43] Miao Y F, Fang X M, Wu F L, Cai M T, Song C H, Meng Q Q, Xu L. Late Cenozoic continuous aridification in the western Qaidam Basin: Evidence from sporopollen records. Clim Past, 2013, 91863-1877 CrossRef ADS Google Scholar

[44] Nowak R M, Paradiso J L. 1983. Walker’s Mammals of the World, 4th Vol. 2. Baltimore: The Johns Hopkins Univ Press. 1362. Google Scholar

[45] Pan G T, Liu Y P, Zheng L L, Gen Q R, Wang L Q, Yin F G, Li G M, Liao Z L, Zhu D C. 2013. The Collision Tectonic and Effect on Qinghai-Tibet Plateau (in Chinese). Guangzhou: Guangdong Science & Technology Press. 466. Google Scholar

[46] Peláez-Campomane P, Daams R. 2002. Middle Miocene rodents from Paşalar, Anatolia, Turkey. Acta Palaeontol Pol, 47: 125–132. Google Scholar

[47] Pound M J, Haywood A M, Salzmann U, Riding J B. Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97–5.33 Ma). Earth-Sci Rev, 2012, 1121-22 CrossRef ADS Google Scholar

[48] Qiu Z D. 1996. Middle Miocene Micromammalian Fauna from Tunggur, Nei Mongol (in Chinese). Beijing: Science Press. 216. Google Scholar

[49] Qiu Z D. 2001. Glirid and gerbillid rodents from the middle Miocene Quantougou fauna of Lanzhou, Gansu. Vert PalAsiat, 39: 299–306. Google Scholar

[50] Qiu Z D. The Neogene mammalian faunas of Ertemte and Harr Obo in Inner Mongolia (Nei Mongol), China.—12. Jerboas-Rodentia: Dipodidae. Senckenb Lethaea, 2003, 83135-147 CrossRef Google Scholar

[51] Qiu Z D, Han D F, Qi G Q, Lin Y F. 1985. A preliminary report on a micromammalian assemblage from the hominoid locality of Lufeng, Yunnan (in Chinese). Acta Anthropol Sin. 4: 13–32. Google Scholar

[52] Qiu Z D, Li C K. 1984. Late Pleistocene micromammal fauna of Sanjiacun, Kunming (in Chinese). Vert PalAsiat, 22: 281–293. Google Scholar

[53] Qiu Z D, Li Q. 2016. Neogene Rodents from Central Nei Mongol, China (in Chinese). Beijing: Science Press. 684. Google Scholar

[54] Qiu Z D, Storch G. The early Pliocene micromammalian fauna of bilike, Inner Mongolia, China (Mammalia: Lipotyphla, Chiroptera, Rodentia, Lagomorpha). Senckenb Lethaea, 2000, 80173-229 CrossRef Google Scholar

[55] Qiu Z D, Tong Y S. 2015. Order Eulipotyphla. In: Li C K, Qiu Z D eds., Palaeovertebrata Sinica Volume III Basal Synapsids and Mammals Fascicle 3 (Serial no. 16) Eulipotyphlans, Proteutheres, Chiropterans, Euarchontans, and Anagalids (in Chinese). Beijing: Science Press. 140. Google Scholar

[56] Qiu Z D, Wang X M, Li Q. 2013. Neogene faunal succession and biochronology of central Nei Mongol (Inner Mongolia). In: Wang X M, Flynn L J, Fortelius M, eds. Fossil Mammals of Asia—Neogene Biostratigraphy and Chronology. New York: Columbia University Press. 155–186. Google Scholar

[57] Shaanxi Geological Survey. 2003. People’s Republic of China Regional Geological Survey. Scale 1: 250000 The Ayakkum Lake Area (J45C003004) (in Chinese). Beijing: China Geological Survey. 276. Google Scholar

[58] Shang X, Li X Q, An Z S, Ji M, Zhang H B. Modern pollen rain in the Lake Qinghai basin, China. Sci China Ser D-Earth Sci, 2009, 521510-1519 CrossRef Google Scholar

[59] Shevenell A E, Kennett J P, Lea D W. Middle Miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling: A Southern Ocean perspective. Geochem Geophys Geosyst, 2008, 9Q02006 CrossRef ADS Google Scholar

[60] Song X Y, Spicer R A, Yang J, Yao Y F, Li C S. Pollen evidence for an Eocene to Miocene elevation of central southern Tibet predating the rise of the High Himalaya. Palaeogeogr Palaeoclimatol Palaeoecol, 2010, 297159-168 CrossRef ADS Google Scholar

[61] Song Z C, Li M Y, Zhang Y Y, Zheng Y H, Wang W M, Zhu Z H, Wang D N, Zhou S F, Zhao C B, Zhao Y L. 1999. Pollen Fossils of China Volume I—Late Cretaceous and Tertiary Pollens (in Chinese). Beijing: Science Press. 910. Google Scholar

[62] Su T, Farnsworth A, Spicer R A, Huang J, Wu F X, Liu J, Li S F, Xing Y W, Huang Y J, Deng W Y D, Tang H, Xu C L, Zhao F, Srivastava G, Valdes P J, Deng T, Zhou Z K. No high Tibetan Plateau until the Neogene. Sci Adv, 2019, 5eaav2189 CrossRef PubMed ADS Google Scholar

[63] Tong H W, Zhang S Q, Li Q, Xu Z J. 2008. Late Pleistocene mammalian fossils from the Xitaiping cave, Shidu, Beijing (in Chinese). Vert PalAsiat, 46: 51–70. Google Scholar

[64] Wang X M, Wang Y, Li Q, Tseng Z J, Takeuchi G T, Deng T, Xie G P, Chang M M, Wang N. Cenozoic vertebrate evolution and paleoenvironment in Tibetan Plateau: Progress and prospects. Gondwana Res, 2015, 271335-1354 CrossRef ADS Google Scholar

[65] Wang Y X. 2003. A Complete Checklist of Mammal Species and Subspecies in China, A Taxonomic and Geographic Reference (in Chinese). Beijing: China Forestry Publishing House. 394. Google Scholar

[66] Wang Y Z. 1985. A new genus and species of Gliridae-Chaetocauda sichuanensis gen. et sp. nov (in Chinese). Acta Theriol Sin, 5: 67–75. Google Scholar

[67] Wu S Y, Zhang F C, Edwards S V, Wu W Y, Ye J, Bi S D, Ni X J, Quan C, Meng J, Organ C L. The evolution of bipedalism in jerboas (Rodentia: Dipodoidea): Origin in humid and forested environments. Evolution, 2014, 682108-2118 CrossRef PubMed Google Scholar

[68] Wu W Y. 1985. The Neogene mammalian faunas of Ertemte and Harr Obo in Inner Mongolia (Nei Mongol), China.—4. Dormice-Rodentia: Gliridae. Senckenb Lethaea, 66: 69–88. Google Scholar

[69] Wu W Y. 2019. Family Gliridae. In: Li C K, Qiu Z D, eds. Palaeovertebrata Sinica Volume III, Basal Synapsids and Mammals Fascicle 5(1) (Serial no. 18-1) Glires II: Rodentia I (in Chinese). Beijing: Science Press. 161–177. Google Scholar

[70] Wu W Y, Meng J, Ye Jie, Ni X J, Bi S D, Wei Y P. 2009. The Miocene mammals from Dingshanyanchi Formation of North Junggar Basin, Xinjiang. Vert PalAsiat, 47: 208–233. Google Scholar

[71] Wu W Y, Meng J, Ye Jie, Ni X J, Bi S D. 2016. Restudy of the Late Oligocene dormice from northern Junggar Basin. Vert PalAsiat, 54: 36–50. Google Scholar

[72] Wu Z Y, Wang X F, Liu F X, Zhu Y C, Li S Y, Li B, He S Y, Zhang X S, Chen C D, Zhou Y L, Zhou G Y, Lin Y, Hou X Y. 1980. Vegetation of China (in Chinese). Beijing: Science Press. 1375. Google Scholar

[73] Xiao A F, Li D P, Li X L, Zhou X K, Du S X. 2005. Evolution of the Kumukuli basin in Sinkiang (in Chinese). Geol Shaanxi, 23: 59–69. Google Scholar

[74] Xu Z Q, Yang J S, Li H B, Zhang J X, Wu C L. 2007. Orogenic Plateaux-Terrane Amalgamation, Collision and Uplift in the Qinghai-Tibet Plateau (in Chinese). Beijing: Geological Publishing House Press. 458. Google Scholar

[75] Yao T D, Wu F Y, Ding L, Sun J M, Zhu L P, Piao S L, Deng T, Ni X J, Zheng H B, Ouyang H. Multispherical interactions and their effects on the Tibetan Plateau’s earth system: A review of the recent researches. Natl Sci Rev, 2015, 2468-488 CrossRef Google Scholar

[76] Yuan G Y, Li H M, Zhang P, Zhang L. 1991. Vertebrates Fauna Xinjiang (in Chinese). Urumqi: Xinjiang People’s Press. 537. Google Scholar

[77] Zachos J, Pagani M, Sloan L, Thomas E, Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 2001, 292686-693 CrossRef PubMed ADS Google Scholar

[78] Zhang K X, Wang G C, Ji J L, Luo M S, Kou X H, Wang Y M, Xu Y D, Chen F N, Chen R M, Song B W, Zhang J Y, Liang Y P. Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet Plateau and their response to uplift of the plateau. Sci China Earth Sci, 2010, 531271-1294 CrossRef Google Scholar

[79] Zhang L Y, Zhang X M. 1987. The Vegetations of Kumukuli Basin (in Chinese). Chin J Grassl, 1: 3–10. Google Scholar

[80] Zhang R Z, Jin S K, Quan G Q, Li S H, Ye Z Y, Wang F G, Zhang M L. 1997. Distribution of Mammalian Species in China (in Chinese). Beijing: China Forestry Publishing House. 280. Google Scholar

[81] Zhang Y X, Che Z C, Liu L, Luo J L. 1996. Tertiary in the Kumkol basin, Xinjiang (in Chinese). Region Geol Chin, 4: 311–316. Google Scholar

[82] Zhao Y, Herzschuh U. Modern pollen representation of source vegetation in the Qaidam Basin and surrounding mountains, north-eastern Tibetan Plateau. Veget Hist Archaeobot, 2009, 18245-260 CrossRef Google Scholar

[83] Zheng S H. 2015. Order Chiroptera. In: Li C K, Qiu Z D eds. Palaeovertebrata Sinica Volume III Basal Synapsids and Mammals Fascicle 3 (Serial no. 16) Eulipotyphlans, Proteutheres, Chiropterans, Euarchont- ans, and Anagalids (in Chinese). Beijing: Science Press. 161–283. Google Scholar

[84] Zhou J S, Li S H, Gu J H. 1985. The preliminary observation on the mammals in Kunlun-Altun Basin (in Chinese). Acta Theriol Sin, 5: 160. Google Scholar

[85] Zhu Z H, Wu L Y, Zhang Y Y, Xi P. 1985. A Research on Tertiary Palynology from the Qaidam Basin, Qinghai Province (in Chinese). Beijing: The Petroleum Industry Press. 297. Google Scholar

  • Figure 1

    Geographic location of fossil locality in the Kumkol Basin and geological map of Saysikeya-Baiquan rivers drainage area.

  • Figure 2

    Selected micromammalian fossils from loc. KMKL2013030901 in the Kumkol Basin, Xinjiang. 1–3. Eptesicus sp., right p4, V 26179; 4. Myomimus maritsensis, right M1/2, V 26182; 5. Erinaceus cf. E. mongoicus, left M2, V 26178; 6–7. Dipus nannus: 6. right M1,V 26183.1, 7. right M2,V 26183.2; 8. Ochotonidae gen. et sp. indet., fragmentary upper cheek tooth, V 26185; 9–18: Democricetodon lindsayi, 9. left M1,V 26184.1, 10. right M1, V 26184.2, 11. left M2, V 26184.3, 12. left M2, V 26184.4, 13. left M3, V 26184.5, 14. left M3, V 26184.6, 15. left M3, V 26184.7, 16. right m1, V 26184.10, 17. right m2, V 26184.11, 18. left m3, V 26184.12; 19–31. Spermophilinus kumkolensis sp. nov.: 19. right DP4, V 261814.1, 20. left P4, V 261814.2, 21. left M1/2, V 261814.3, 22. left M1/2, V 261814.4, 23. right M1/2, V 261814.7, 24. left M3, V 261814.9, 25. left dp4, V 261814.10, 26. right p4, V 261814.11, 27. holotype, left m1/2, V 26180, 28. right m1/2, V 261814.15, 29. right m1/2, V 261814.16, 30. right m1/2, V 261814.17, 31. right m3, V 261814.20. 2 in buccal view, 3 in lingual view, others all in occlusal views.

  • Figure 3

    Diagram of molars’ (M1/2 and m1/2) measurements of all Spermophillinus species. Black is the new species, greys are known species.

  • Figure 4

    Principal pollen graphs from the mammalian fossil locality in the Kumkol Basin. 1–3. Picea; 4–5. Pinus; 6. Ephedra; 7–10. Quercus. E, evergreen; 11–13. Quercus. D, deciduous; 14. Corylus; 15–16. Hippophae; 17. Fraxinus; 18. Betula; 19–20. Rosaceae; 21. Asteraceae; 22–23. Artemisia; 24. Poaceae; 25–26. Chenopodiaceae.

  • Figure 5

    Percentage graph of principal pollen types from the mammalian fossil locality in the Kumkol Basin.

  • Table 1   Cheek teeth measurements of sp. nov. (mm)

    Specimens

    Length

    Width

    N

    Mean

    Range

    N

    Mean

    Range

    DP4

    1

    1.28

    1

    1.40

    P4

    1

    1.40

    1

    1.84

    M1 or M2

    6

    1.59

    1.52–1.66

    5

    2.07

    1.84–2.18

    dp4

    2

    1.40

    1.40–1.40

    2

    1.26

    1.16–1.35

    p4

    1

    1.44

    1

    1.36

    m1 or m2

    7

    1.67

    1.54–1.84

    8

    1.67

    1.54–1.86

    m3

    1

    1.78

    1

    1.78

  • Table 2   Measurements of the molars of from Kumukol Basin (mm)

    Specimens

    Length

    Width

    N

    Mean

    Range

    N

    Mean

    Range

    M1

    2

    1.88

    1.86–1.90

    2

    1.37

    1.36–1.38

    M2

    2

    1.40

    1.40–1.40

    2

    1.35

    1.30–1.40

    M3

    3

    1.10

    1.02–1.18

    3

    1.09

    1.08–1.10

    m1

    1

    1.64

    3

    1.12

    1.10–1.16

    m2

    1

    1.38

    1

    1.20

    m3

    1

    1.36

    2

    1.10

    1.10–1.10

qqqq

Contact and support