logo

SCIENCE CHINA Earth Sciences, Volume 61 , Issue 9 : 1292-1305(2018) https://doi.org/10.1007/s11430-018-9231-9

Sedimentary and geochemical evidence of Eocene climate change in the Xining Basin, northeastern Tibetan Plateau

More info
  • ReceivedMar 11, 2018
  • AcceptedJun 4, 2018
  • PublishedJul 19, 2018

Abstract


Funded by

the National Natural Science Foundation of China(Grant)

the Chinese Academy of Sciences(Grant)


Acknowledgment

We are grateful to anonymous reviewers for their constructive comments and suggestions. The first author is grateful to CAS-TWAS for providing me with a Fellowship during my period of study in Beijing. Special thanks are due to Dr. Junyi Ge, Yawei Wang, Wenqi Jiang, Xiaoyan Zhang, Zhipeng Wu and Xin Wang for their assistance in the field. This study was supported by the National Natural Science Foundation of China (Grant Nos. 41430531 & 41690114), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB26020201) and the International Partnership Program of Chinese Academy of Sciences (Grant No. 131C11KYSB20160061).


References

[1] Abels H A, Dupont-Nivet G, Xiao G, Bosboom R, Krijgsman W. Step-wise change of Asian interior climate preceding the Eocene-Oligocene Transition (EOT). Palaeogeogr Palaeoclimatol Palaeoecol, 2011, 299: 399-412 CrossRef Google Scholar

[2] Anagnostou E, John E H, Edgar K M, Foster G L, Ridgwell A, Inglis G N, Pancost R D, Lunt D J, Pearson P N. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature, 2016, 533: 380-384 CrossRef PubMed ADS Google Scholar

[3] Bohaty S M, Zachos J C. Significant Southern Ocean warming event in the late middle Eocene. Geology, 2003, 31: 1017-1020 CrossRef ADS Google Scholar

[4] Bosboom R, Dupont-Nivet G, Grothe A, Brinkhuis H, Villa G, Mandic O, Stoica M, Kouwenhoven T, Huang W, Yang W, Guo Z J. Timing, cause and impact of the late Eocene stepwise sea retreat from the Tarim Basin (west China). Palaeogeogr Palaeoclimatol Palaeoecol, 2014, 403: 101-118 CrossRef Google Scholar

[5] Bosboom R E, Dupont-Nivet G, Houben A J P, Brinkhuis H, Villa G, Mandic O, Stoica M, Zachariasse W J, Guo Z J, Li C X, Krijgsman W. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change. Palaeogeogr Palaeoclimatol Palaeoecol, 2011, 299: 385-398 CrossRef Google Scholar

[6] Bracciali L, Najman Y, Parrish R R, Akhter S H, Millar I. The Brahmaputra tale of tectonics and erosion: Early Miocene river capture in the Eastern Himalaya. Earth Planet Sci Lett, 2015, 415: 25-37 CrossRef ADS Google Scholar

[7] Chamley H. 1989. Clay formation through weathering. In: Chamley H, ed. Clay Sedimentology. Berlin: Springer-Verlag. 21–50. Google Scholar

[8] CIE. 1978. Recommendations on Uniform Color Spaces, Color-Difference Equations and Psyhometric Color Terms. Paris: Bureau Central de la CIE. Google Scholar

[9] Cullers R L. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos, 2000, 51: 181-203 CrossRef ADS Google Scholar

[10] Dabard M P. Lower Brioverian formations (Upper Proterozoic) of the Armorican Massif (France): Geodynamic evolution of source areas revealed by sandstone petrography and geochemistry. Sediment Geol, 1990, 69: 45-58 CrossRef ADS Google Scholar

[11] Dai S, Fang X, Dupont-Nivet G, Song C, Gao J, Krijgsman W, Langereis C, Zhang W. Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. J Geophys Res, 2006, 111: B11102 CrossRef ADS Google Scholar

[12] Dercourt J, Ricou L E, Vrielinck B. 1993. Atlas Tethys Palaeoenvironmental Maps. Paris: Gauthier-Villars. 307. Google Scholar

[13] Dupont-Nivet G, Hoorn C, Konert M. Tibetan uplift prior to the Eocene-Oligocene climate transition: Evidence from pollen analysis of the Xining Basin. Geology, 2008, 36: 987 CrossRef ADS Google Scholar

[14] Dupont-Nivet G, Horton B K, Butler R F, Wang J, Zhou J, Waanders G L. Paleogene clockwise tectonic rotation of the Xining-Lanzhou region, northeastern Tibetan Plateau. J Geophys Res, 2004, 109: B04401 CrossRef ADS Google Scholar

[15] Dupont-Nivet G, Krijgsman W, Langereis C G, Abels H A, Dai S, Fang X. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature, 2007, 445: 635-638 CrossRef PubMed Google Scholar

[16] Duvall A R, Clark M K, van der Pluijm B A, Li C. Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry. Earth Planet Sci Lett, 2011, 304: 520-526 CrossRef ADS Google Scholar

[17] Fang X, Zan J, Appel E, Lu Y, Song C, Dai S, Tuo S. An Eocene-Miocene continuous rock magnetic record from the sediments in the Xining Basin, NW China: Indication for Cenozoic persistent drying driven by global cooling and Tibetan Plateau uplift. Geophys J Int, 2015, 201: 78-89 CrossRef ADS Google Scholar

[18] Ferrell R E, Brooks R A. The selective adsorption of sodium by clay minerals in lakes Pontchartrain and Maurepas, Louisiana. Clays Clay Miner, 1971, 19: 75-81 CrossRef ADS Google Scholar

[19] Gao X, Hao Q, Wang L, Oldfield F, Bloemendal J, Deng C, Song Y, Ge J, Wu H, Xu B, Li F, Han L, Fu Y, Guo Z. The different climatic response of pedogenic hematite and ferrimagnetic minerals: Evidence from particle-sized modern soils over the Chinese Loess Plateau. Quat Sci Rev, 2018, 179: 69-86 CrossRef ADS Google Scholar

[20] Guo Z T, Berger A, Yin Q Z, Qin L. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records. Clim Past, 2009, 5: 21-31 CrossRef Google Scholar

[21] Guo Z, Liu T, Fedoroff N, Wei L, Ding Z, Wu N, Lu H, Jiang W, An Z. Climate extremes in Loess of China coupled with the strength of deep-water formation in the North Atlantic. Glob Planet Change, 1998, 18: 113-128 CrossRef ADS Google Scholar

[22] Guo Z T, Ruddiman W F, Hao Q Z, Wu H B, Qiao Y S, Zhu R X, Peng S Z, Wei J J, Yuan B Y, Liu T S. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 2002, 416: 159-163 CrossRef PubMed ADS Google Scholar

[23] Guo Z T, Sun B, Zhang Z S, Peng S Z, Xiao G Q, Ge J Y, Hao Q Z, Qiao Y S, Liang M Y, Liu J F, Yin Q Z, Wei J J. A major reorganization of Asian climate by the early Miocene. Clim Past, 2008, 4: 153-174 CrossRef Google Scholar

[24] Hong H, Wang C, Xu Y, Zhang K, Yin K. 2010. Paleoclimate evolution of the Qinghai-Tibet Plateau since the Cenozoic. Earth Sci-J China Univ of Geosci, 35: 728–736. Google Scholar

[25] Hoorn C, Straathof J, Abels H A, Xu Y, Utescher T, Dupont-Nivet G. A late Eocene palynological record of climate change and Tibetan Plateau uplift (Xining Basin, China). Palaeogeogr Palaeoclimatol Palaeoecol, 2012, 344-345: 16-38 CrossRef Google Scholar

[26] Horton B, Dupont-Nivet G, Zhou J, Waanders G, Butler R F, Wang J. 2004. Mesozoic-Cenozoic evolution of the Xining-Minhe and Dangchang basins northeastern Tibetan Plateau: Magnetostratigraphic and biostratigraphic results. J Geophys Res-Solid Earth, 109. Google Scholar

[27] Lear C H, Elderfield H, Wilson P A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 2000, 287: 269-272 CrossRef ADS Google Scholar

[28] Li C K, Qiu Z D. 1980. Early Miocene mammalian fossils of the Xining Basin Qinghai Province. Vertebrata Palasiatica, 18: 198–209. Google Scholar

[29] Licht A, van Cappelle M, Abels H A, Ladant J B, Trabucho-Alexandre J, France-Lanord C, Donnadieu Y, Vandenberghe J, Rigaudier T, Lécuyer C, Terry Jr D, Adriaens R, Boura A, Guo Z, Soe A N, Quade J, Dupont-Nivet G, Jaeger J J. Asian monsoons in a late Eocene greenhouse world. Nature, 2014, 513: 501-506 CrossRef PubMed ADS Google Scholar

[30] Liu D, Abuduwaili J, Lei J, Wu G, Gui D. Wind erosion of saline playa sediments and its ecological effects in Ebinur Lake, Xinjiang, China. Environ Earth Sci, 2011, 63: 241-250 CrossRef Google Scholar

[31] Lo F L, Chen H F, Fang J N. Discussion of suitable chemical weathering proxies in sediments by comparing the dissolution rates of minerals in different rocks. J Geol, 2017, 125: 83-99 CrossRef ADS Google Scholar

[32] Long L Q, Fang X M, Miao Y F, Bai Y, Wang Y L. Northern Tibetan Plateau cooling and aridification linked to Cenozoic global cooling: Evidence from n-alkane distributions of Paleogene sedimentary sequences in the Xining Basin. Chin Sci Bull, 2011, 56: 1569-1578 CrossRef ADS Google Scholar

[33] Lu J, Song B, Chen R, Zhang J, Ye H. 2010. Palynological assemblage of Eocene-Oligocene pollen and their biostratigraphic correlation in Dahonggou Daqaidam Regions Qaidam Basin. Earth Sci-J Chin Univ Geosci, 35: 839–848. Google Scholar

[34] Maher B A. Magnetic properties of modern soils and Quaternary loessic paleosols: Paleoclimatic implications. Palaeogeogr Palaeoclimatol Palaeoecol, 1998, 137: 25-54 CrossRef ADS Google Scholar

[35] Methner K, Mulch A, Fiebig J, Wacker U, Gerdes A, Graham S A, Chamberlain C P. Rapid middle eocene temperature change in western north America. Earth Planet Sci Lett, 2016, 450: 132-139 CrossRef ADS Google Scholar

[36] Miller K G, Kominz M A, Browning J V, Wright J D, Mountain G S, Katz M E, Sugarman P J, Cramer B S, Christie-Blick N, Pekar S F. The Phanerozoic record of global sea-level change. Science, 2005, 310: 1293-1298 CrossRef PubMed ADS Google Scholar

[37] Mosbrugger V, Utescher T, Dilcher D L. Cenozoic continental climatic evolution of Central Europe. Proc Natl Acad Sci USA, 2005, 102: 14964-14969 CrossRef PubMed ADS Google Scholar

[38] Nagao S, Nakashima S. The factors controlling vertical color variations of North Atlantic Madeira Abyssal Plain sediments. Mar Geol, 1992, 109: 83-94 CrossRef ADS Google Scholar

[39] Najman Y, Bickle M, BouDagher-Fadel M, Carter A, Garzanti E, Paul M, Wijbrans J, Willett E, Oliver G, Parrish R, Akhter S H, Allen R, Ando S, Chisty E, Reisberg L, Vezzoli G. The Paleogene record of Himalayan erosion: Bengal Basin, Bangladesh. Earth Planet Sci Lett, 2008, 273: 1-14 CrossRef ADS Google Scholar

[40] Nesbitt H W, Markovics G, Price R C. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochim Cosmochim Acta, 1980, 44: 1659-1666 CrossRef ADS Google Scholar

[41] Nesbitt H W, Young G M, McLennan S M, Keays R R. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. J Geol, 1996, 104: 525-542 CrossRef ADS Google Scholar

[42] Nie J, Song Y, King J W, Fang X, Heil C. HIRM variations in the Chinese red-clay sequence: Insights into pedogenesis in the dust source area. J Asian Earth Sci, 2010, 38: 96-104 CrossRef ADS Google Scholar

[43] Pagani M, Zachos J C, Freeman K H, Tipple B, Bohaty S. Marked decline in atmospheric carbon dioxide concentrations during the paleogene. Science, 2005, 309: 600-603 CrossRef PubMed ADS Google Scholar

[44] Pearson P N, Foster G L, Wade B S. Atmospheric carbon dioxide through the Eocene-Oligocene climate transition. Nature, 2009, 461: 1110-1113 CrossRef PubMed ADS Google Scholar

[45] QBGMR (Qinghai Bureau of Geology and Mineral Resources). 1985. Geologic Maps of the Duoba Gaodian Tianjiazai and Xining Regions 4 Sheets with Regional Geologic Report (1:50000 Scale) (in Chinese). Beijing: Geologial Publishing House. 199. Google Scholar

[46] QBGMR (Qinghai Bureau of Geology and Mineral Resources). 1991. Regional Geology of the Qinghai Province (in Chinese). Beijing: Geologial Publishing House. 662. Google Scholar

[47] Qiu Z, Qiu Z. Chronological sequence and subdivision of Chinese Neogene mammalian faunas. Palaeogeogr Palaeoclimatol Palaeoecol, 1995, 116: 41-70 CrossRef ADS Google Scholar

[48] Quan C, Liu Y S C, Utescher T. Paleogene temperature gradient, seasonal variation and climate evolution of northeast China. Palaeogeogr Palaeoclimatol Palaeoecol, 2012, 313-314: 150-161 CrossRef Google Scholar

[49] Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate. Nature, 1992, 359: 117-122 CrossRef ADS Google Scholar

[50] Rieser A B, Bojar A V, Neubauer F, Genser J, Liu Y, Ge X H, Friedl G. Monitoring Cenozoic climate evolution of northeastern Tibet: Stable isotope constraints from the western Qaidam Basin, China. Int J Earth Sci-Geol Rundsch, 2009, 98: 1063-1075 CrossRef ADS Google Scholar

[51] Singh B P. Evolution of the Paleogene succession of the western Himalayan foreland basin. Geosci Front, 2013, 4: 199-212 CrossRef Google Scholar

[52] Song B, Zhang K, Lu J, Wang C, Xu Y, Greenough J. The middle Eocene to early Miocene integrated sedimentary record in the Qaidam Basin and its implications for paleoclimate and early Tibetan Plateau uplift. Can J Earth Sci, 2013, 50: 183-196 CrossRef ADS Google Scholar

[53] Sun J, Jiang M. Eocene seawater retreat from the southwest Tarim Basin and implications for early Cenozoic tectonic evolution in the Pamir Plateau. Tectonophysics, 2013, 588: 27-38 CrossRef ADS Google Scholar

[54] Tada R, Zheng H, Clift P D. Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau. Prog Earth Planet Sci, 2016, 3: 4 CrossRef ADS Google Scholar

[55] Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell. 312. Google Scholar

[56] Timperley M H, Vigor-Brown R J. Weathering of pumice in the sediments as a possible source of major ions for the waters of Lake Taupo, New Zealand. Chem Geol, 1985, 49: 43-52 CrossRef ADS Google Scholar

[57] Torrent J, Barrón V, Liu Q. Magnetic enhancement is linked to and precedes hematite formation in aerobic soil. Geophys Res Lett, 2006, 33: 1-4 CrossRef ADS Google Scholar

[58] Torrent J, Liu Q S, Barrón V. Magnetic susceptibility changes in relation to pedogenesis in a Xeralf chronosequence in northwestern Spain. Eur J Soil Sci, 2010, 61: 161-173 CrossRef Google Scholar

[59] White A F, Blum A E, Bullen T D, Vivit D V, Schulz M, Fitzpatrick J. The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks. Geochim Cosmochim Acta, 1999, 63: 3277-3291 CrossRef ADS Google Scholar

[60] Wronkiewicz D J, Condie K C. Geochemistry and mineralogy of sediments from the Ventersdorp and Transvaal Supergroups, South Africa: Cratonic evolution during the early Proterozoic. Geochim Cosmochim Acta, 1990, 54: 343-354 CrossRef ADS Google Scholar

[61] Wu Y H, Li S J. 2004. Significance of lake sediments color for short time scale climate variation (in Chinese with English abstract). Adv Earth Sci, 19: 789–792. Google Scholar

[62] Xiao G Q, Abels H A, Yao Z Q, Dupont-Nivet G, Hilgen F J. Asian aridification linked to the first step of the Eocene-Oligocene climate Transition (EOT) in obliquity-dominated terrestrial records (Xining Basin, China). Clim Past, 2010, 6: 501-513 CrossRef Google Scholar

[63] Xiao G, Guo Z, Dupont-Nivet G, Lu H, Wu N, Ge J, Hao Q, Peng S, Li F, Abels H A, Zhang K. Evidence for northeastern Tibetan Plateau uplift between 25 and 20 Ma in the sedimentary archive of the Xining Basin, Northwestern China. Earth Planet Sci Lett, 2012, 317-318: 185-195 CrossRef ADS Google Scholar

[64] Yang S L, Ding Z L. Color reflectance of Chinese loess and its implications for climate gradient changes during the last two glacial-interglacial cycles. Geophys Res Lett, 2003, 30: 2058 CrossRef ADS Google Scholar

[65] Zachos J C, Dickens G R, Zeebe R E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 2008, 451: 279-283 CrossRef PubMed ADS Google Scholar

[66] Zachos J C, Quinn T M, Salamy K A. High-resolution (104 years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition. Paleoceanography, 1996, 11: 251-266 CrossRef ADS Google Scholar

[67] Zachos J, Pagani M, Sloan L, Thomas E, Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 2001, 292: 686-693 CrossRef PubMed ADS Google Scholar

[68] Zhang C, Guo Z T. Clay mineral changes across the Eocene-Oligocene transition in the sedimentary sequence at Xining occurred prior to global cooling. Palaeogeogr Palaeoclimatol Palaeoecol, 2014, 411: 18-29 CrossRef Google Scholar

[69] Zhang J, Wang Y, Zhang B, Zhang Y. Tectonics of the Xining Basin in NW China and its implications for the evolution of the NE Qinghai-Tibetan Plateau. Basin Res, 2016, 28: 159-182 CrossRef ADS Google Scholar

[70] Zhang Z, Wang H, Guo Z T, Jiang D. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat?. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 245: 317-331 CrossRef Google Scholar

  • Figure 1

    Geologic map of the Xining Basin (slightly modified after Xiao et al., 2012) showing the location of the Xijigou section (XG) and Tashan section (TS).

  • Figure 2

    (a) Generalized Cenozoic stratigraphy of the Xining Basin (modified and continued after Xiao et al., 2012). (b) Detailed vertical lithostratigraphy and lithology of the Eocene sediments from the Xijigou section and Tashan section (lower 26 m) of the Xining Basin (formation ages are adopted from Dai et al., 2006 and Xiao et al., 2012). (c) Outcrop view of Unit 1 (~52–40 Ma) displaying the dominance of dark reddish-brown mudstone lithofacies; the thickest gypsum bed (~10 m) at the top represents a significant depositional and climatic shift. (d) Outcrop view of Unit 2 (~40–34 Ma) showing the dominance of alternating gypsum and mudstone lithofacies.

  • Figure 3

    Vertical distribution of sediment color parameters of the Eocene sediments of the Xining Basin: (a) redness (a*); (b) blueness (b*); (c) yellowness (L*). Shaded area indicates an abrupt excursion of the proxies.

  • Figure 4

    Bi-plots of major elements of the Eocene sediments for the Xining Basin. Blue and red dots represent samples from Unit 1 (52–40 Ma) and Unit 2 (40–34 Ma) respectively. UCC (Upper Continental Crust) data are adopted after Taylor and McLennan (1985).

  • Figure 5

    Vertical variations of Na/Al, Na/Ti, K/Na (molecular ratio) and Chemical Index of Weathering (CIW′) for the Eocene sediments of the Xining Basin.

  • Figure 6

    Plot of K vs. Rb (after Wronkiewicz and Condie, 1990) for the Eocene Xining Basin sediments. Blue dots and red dots represent the elemental (K/Rb) variation between Unit 1 (52–40 Ma) and Unit 2 (40–34 Ma), respectively. K/Rb=230 line indicates the average crustal ratio.

  • Figure 7

    Comparison of the vertical variations of sediment color parameter a*/L* (redness/lightness, (a)) and Chemical Index of Weathering (CIW′, (b)) for the Eocene sedimentary sequence recorded in the Xining Basin. (c) Vertical variation of CIW′ from the Qaidam Basin (Song et al., 2013), northeastern Tibetan Plateau, on the same time scale. (d)–(h) Pollen diagram showing the abundance of major floral components (Long et al., 2011) recorded in the Xiejia section of the Xining Basin. (i) Variation of marine δ18O records on the same timescale (Zachos et al., 2001). Shaded area indicates Eocene warming events, and MECO and LEW are the Middle Eocene Climate Optimum and Late Eocene Warming, respectively.

qqqq

Contact and support