logo

SCIENCE CHINA Earth Sciences, Volume 60 , Issue 1 : 20-29(2017) https://doi.org/10.1007/s11430-016-0166-y

Anatomy of a eustatic event during the Turonian (Late Cretaceous) hot greenhouse climate

More info
  • ReceivedJul 27, 2016
  • AcceptedNov 2, 2016
  • PublishedDec 7, 2016

Abstract


Acknowledgment

The authors are very grateful to the organizers and hosts of the IGCP 609 International Workshop on Climate and Environmental Evolution in the Mesozoic Greenhouse World, held in Nanjing, China from 5−11 September 2015, for putting together a highly stimulating and most enjoyable meeting. The authors also thank two anonymous reviewers for their contributions toward improvement of this paper. This paper is a contribution to IGCP Project 609 “Climate-environmental deteriorations during greenhouse phases: Causes and consequences of short-term Cretaceous sea-level changes”.


References

[1] Barrera E, Savin S M. 1999. Evolution of late Campanian-Maastrichtian marine climates and oceans. In: Barrera E, Johnson C, eds. Evolution of the Cretaceous Ocean-Climate System. Geol Soc Am Spec Paper, 332: 245–282. Google Scholar

[2] Barron E J, Washington W M. 1985. Warm Cretaceous climates: High atmospheric CO2 as a plausible mechanism. In: Sundquist E T, Broecker W S, eds. The Carbon Cycle and Atmospheric CO2: Natural Variations Archaen to Present. Amer Geophys Union Geophys Monogr, 32: 546–553. Google Scholar

[3] Barron E J, Peterson W H, Pollard D, Thompson S. Past climate and the role of ocean heat transport: Model simulations for the Cretaceous. Paleoceanography, 1993, 8: 785-798 CrossRef ADS Google Scholar

[4] Beerling D J, Fox A, Stevenson D S, Valdes P J. Enhanced chemistry-climate feedbacks in past greenhouse worlds. Proc Natl Acad Sci USA, 2011, 108: 9770-9775 CrossRef PubMed ADS Google Scholar

[5] Bice K L, Norris R D. Possible atmospheric CO2 extremes of the Middle Cretaceous (late Albian-Turonian). Paleoceanography, 2002, 17: 22-1-22-17 CrossRef ADS Google Scholar

[6] Bice K L, Huber B T, Norris R D. Extreme polar warmth during the Cretaceous greenhouse? Paradox of the late Turonian δ18O record at Deep Sea Drilling Project Site 511. Paleoceanography, 2003, 18: 1031 CrossRef ADS Google Scholar

[7] Bornemann A, Norris R D, Friedrich O, Beckmann B, Schouten S, Damsté J S S, Vogel J, Hofmann P, Wagner T. Isotopic evidence for glaciation during the Cretaceous Supergreenhouse. Science, 2008, 319: 189-192 CrossRef PubMed ADS Google Scholar

[8] Clarke L J, Jenkyns H C. New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere. Geology, 1999, 27: 699-702 CrossRef Google Scholar

[9] Cloetingh S, Haq B U. Inherited landscapes and sea level change. Science, 2015, 347: 1258375 CrossRef PubMed Google Scholar

[10] Cobban W A, Walaszczyk I, Obradovich J D, Mckinney K C. 2006. A USGS zonal table for the Upper Cretaceous middle Cenomanian−Maastrichtian of the Western Interior of the United States based on ammonites, inoceramids, and radiometric ages. USGS Open-File Report 2006-1250: 1–46. Google Scholar

[11] Conrad C P. The solid Earth's influence on sea level. Geol Soc Am Bull, 2013, 125: 1027-1052 CrossRef Google Scholar

[12] DeConto R M, Pollard D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 2003, 421: 245-249 CrossRef PubMed Google Scholar

[13] Fassell M L, Bralower T J. 1999. Warm, equable mid-Cretaceous: Stable isotope evidence. Spec Pap Geol Soc Am, 332: 121–142. Google Scholar

[14] Forster A, Schouten S, Baas M, Sinninghe Damsté J S. Mid-Cretaceous (Albian–Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology, 2007, 35: 919-922 CrossRef ADS Google Scholar

[15] Friedrich O, Schiebel R, Wilson P A, Weldeab S, Beer C J, Cooper M J, Fiebig J. Influence of test size, water depth, and ecology on Mg/Ca, Sr/Ca, δ18O and δ13C in nine modern species of planktic foraminifers. Earth Planet Sci Lett, 2012, 319-320: 133-145 CrossRef ADS Google Scholar

[16] Gale A S. 1996. Turonian correlation and sequence stratigraphy of the Chalk in southern England. In: Hesselbo S P, Parkinson D N, eds. Sequence Stratigraphy in British Geology. Geol Soc London Spec Publ, 103: 177–195. Google Scholar

[17] Galeotti S, Rusciadelli G, Sprovieri M, Lanci L, Gaudio A, Pekar S. Sea-level control on facies architecture in the Cenomanian–Coniacian Apulian margin (Western Tethys): A record of glacio-eustatic fluctuations during the Cretaceous greenhouse?. Palaeogeogr Palaeoclimatol Palaeoecol, 2009, 276: 196-205 CrossRef Google Scholar

[18] Gurnis M, Dietmar Meller R, Moresi L. Cretaceous vertical motion of Australia and the Australian-Antarctic discordance. Science, 1998, 279: 1499-1504 CrossRef ADS Google Scholar

[19] Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic. Science, 1987a, 235: 1156-1167 CrossRef PubMed ADS Google Scholar

[20] Haq B U, Hardenbol J, Vail P R. 1987b. Mesozoic-Cenozoic Cycle Chart. In: Bally A W, ed. Atlas of Seismic Stratigraphy. Am Association Petroleum Geology, Tulsa, Okalahoma (Large Foldout). Google Scholar

[21] Haq B U, Hardenbol J, Vail P R. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea level change. In: Wilgus C W, et al. eds. Sea-Level Changes: An Integrated Approach. SEPM Spec Publication, 42: 71–108. Google Scholar

[22] Haq B U, Al-Qahtani A M. 2005. Phanerozoic cycles of sea-level change on the Arabian Platform. Geo Arabia, 10: 127–160. Google Scholar

[23] Haq B U. Cretaceous eustasy revisited. Glob Planet Change, 2014, 113: 44-58 CrossRef ADS Google Scholar

[24] Hardenbol J, Thierry J, Farley M B, de-Graciansky P C, Vail P R. 1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. In: de Graciansky P C, Hardenbol J, Thierry J, Vail P R, eds. Mesozoic and Cenozoic Sequence Stratigraphy of European basins, Special Publication, Society for Sedimentary Geology. Tulsa, OK (Large Foldouts). 3–13. Google Scholar

[25] Hardenbol J, Robaszynski F. 1998. Introduction to the Upper Cretaceous. In: de Graciansky P C, Hardenbol J, Thierry J, Vail P R, eds. Mesozoic and Cenozoic Sequence Stratigraphy of European Basins, Special Publication, Society for Sedimentary Geology. Tulsa, OK (Large Foldouts). 329–332. Google Scholar

[26] Hay W W. Can humans force a return to a ‘Cretaceous’ climate?. Sedimentary Geol, 2011, 235: 5-26 CrossRef ADS Google Scholar

[27] Hay W W. 2016. Toward understanding Cretaceous climate−An updated review. Sci China Earth Sci, doi: 10.1007/s11430-016-0095-9. Google Scholar

[28] Hay W W, Leslie M A. 1990. Could possible changes in global groundwater reservoir cause eustatic sea-level fluctuations? In: Revelle R. ed. Sea-Level Change. Washington D C: National Academy Press. 161–170. Google Scholar

[29] Herman A B, Spicer R A. Palaeobotanical evidence for a warm Cretaceous Arctic Ocean. Nature, 1996, 380: 330-333 CrossRef ADS Google Scholar

[30] Huber B T, Hodell D A, Hamilton C P. Middle–Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients. Geol Soc Am Bull, 1995, 107: 1164-1191 CrossRef Google Scholar

[31] Huber B T, MacLeod K G, Norris R D. 2002. Abrupt extinction and subsequent reworking of Cretaceous planktonic foraminifera across the K/T boundary: Evidence from the subtropical North Atlantic. Spec Pap Geol Soc Am, 356: 277–289. Google Scholar

[32] Jacobs D K, Sahagian D L. Climate-induced fluctuations in sea level during non-glacial times. Nature, 1993, 361: 710-712 CrossRef ADS Google Scholar

[33] Jarvis I, Gale A S, Jenkyns H C, Pearce M A. Secular variation in Late Cretaceous carbon isotopes: A new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). Geol Mag, 2006, 143: 561-608 CrossRef Google Scholar

[34] Jarvis I, Trabucho-Alexandre J, Gröcke D R, Uličný D, Laurin J. Intercontinental correlation of organic carbon and carbonate stable isotope records: evidence of climate and sea-level change during the Turonian (Cretaceous). Depositional Rec, 2015, 1: 53-90 CrossRef Google Scholar

[35] Joo Y J, Sageman B B. Cenomanian to campanian carbon isotope chemostratigraphy from the western interior basin, U.S.A. J Sedimentary Res, 2014, 84: 529-542 CrossRef ADS Google Scholar

[36] Kennedy W J, Walaszczyk I, Cobban W A. 2000. Pueblo, Colorado, USA, candidate global boundary stratotypes section and point for base of the Turonian Stage of the Cretaceous and for the middle Turonian substage. Acta Geol Polon, 50: 295–334. Google Scholar

[37] Kump L R, Pollard D. Amplification of Cretaceous warmth by biological cloud feedbacks. Science, 2008, 320: 195-195 CrossRef PubMed ADS Google Scholar

[38] Larson R L. Latest pulse of Earth: Evidence for a mid-Cretaceous superplume. Geology, 1991, 19: 547-550 CrossRef Google Scholar

[39] Laurin J, Sageman B B. Cenomanian Turonian Coastal Record in SW Utah, U.S.A.: Orbital-Scale Transgressive Regressive Events During Oceanic Anoxic Event II. J Sedimentary Res, 2007, 77: 731-756 CrossRef ADS Google Scholar

[40] Lee C T A, Lackey J S. Global continental arc flare-ups and their relation to long-term greenhouse conditions. Elements, 2015, 11: 125-130 CrossRef Google Scholar

[41] Liu L, Spasojevic S, Gurnis M. Reconstructing Farallon Plate subduction beneath North America back to the Late Cretaceous. Science, 2008, 322: 934-938 CrossRef PubMed ADS Google Scholar

[42] Meyers S R, Siewert S E, Singer B S, Sageman B B, Condon D J, Obradovich J D, Jicha B R, Sawyer D A. Intercalibration of radioisotopic and astrochronologic time scales for the Cenomanian-Turonian boundary interval, Western Interior Basin, USA. Geology, 2012, 40: 7-10 CrossRef Google Scholar

[43] Miller K G, Sugarman P J, Browning J V, Kominz M A, Olsson R K, Feigenson M D, Hernández J C. Upper Cretaceous sequences and sea-level history, New Jersey Coastal Plain. Geo Soc Am Bull, 2004, 116: 368-393 CrossRef ADS Google Scholar

[44] Miller K G, Wright J D, Browning J V. Visions of ice sheets in a greenhouse world. Mar Geol, 2005, 217: 215-231 CrossRef Google Scholar

[45] Ogg J G, Hinnov L A. 2012. Cretaceous. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. The Geological Time Scale. Amsterdam: Elsevier. 793–853. Google Scholar

[46] Olde K, Jarvis I, Uličný D, Pearce M A, Trabucho-Alexandre J, Čech S, Gröcke D R, Laurin J, Švábenická L, Tocher B A. Geochemical and palynological sea-level proxies in hemipelagic sediments: A critical assessment from the Upper Cretaceous of the Czech Republic. Palaeogeogr Palaeoclimatol Palaeoecol, 2015, 435: 222-243 CrossRef Google Scholar

[47] Poulsen C J, Zhou J. Sensitivity of Arctic climate variability to mean state: Insights from the Cretaceous. J Clim, 2013, 26: 7003-7022 CrossRef Google Scholar

[48] Sageman B B, Gardner M H, Armentrout J M, Murphy A E. Stratigraphic hierarchy of organic carbon–rich siltstones in deep-water facies, Brushy Canyon Formation (Guadalupian), Delaware Basin, West Texas. Geology, 1998, 26: 451-454 CrossRef Google Scholar

[49] Sahagian D, Pinous O, Olferiev A, Zakharov V. 1996. Eustatic curve for the Middle Jurassic-Cretaceous based on Russian Platform and Siberian stratigraphy: Zonal resolution. AAPG Bull, 80: 1433–1458. Google Scholar

[50] Sames B, Wagreich M, Wendler J E, Haq B U, Conrad C P, Melinte-Dobrinescu M C, Hu X, Wendler I, Wolfgring E, Yilmaz I Ö, Zorina S O. Review: Short-term sea-level changes in a greenhouse world—A view from the Cretaceous. Palaeogeogr Palaeoclimatol Palaeoecol, 2016, 441: 393-411 CrossRef Google Scholar

[51] Schlanger S O, Jenkyns H C, Premoli-Silva I. Volcanism and vertical tectonics in the Pacific Basin related to global Cretaceous transgressions. Earth Planet Sci Lett, 1981, 52: 435-449 CrossRef ADS Google Scholar

[52] Tarduno J A, Brinkman D B, Renne P R, Cottrell R D, Scher H, Castillo P. Evidence for extreme climatic warmth from Late Cretaceous Arctic vertebrates. Science, 1998, 282: 2241-2243 CrossRef ADS Google Scholar

[53] Uličný D, Jarvis I, Gröcke D R, Čech S, Laurin J, Olde K, Trabucho-Alexandre J, Švábenická L, Pedentchouk N. A high-resolution carbon-isotope record of the Turonian stage correlated to a siliciclastic basin fill: Implications for mid-Cretaceous sea-level change. Palaeogeogr Palaeoclimatol Palaeoecol, 2014, 405: 42-58 CrossRef Google Scholar

[54] Vandermark D, Tarduno J A, Brinkman D B. A fossil champsosaur population from the high Arctic: Implications for Late Cretaceous paleotemperatures. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 248: 49-59 CrossRef Google Scholar

[55] Voigt S, Hilbrecht H. Late Cretaceous carbon isotope stratigraphy in Europe: Correlation and relations with sea level and sediment stability. Palaeogeogr Palaeoclimatol Palaeoecol, 1997, 134: 39-59 CrossRef Google Scholar

[56] Wagreich M, Haq B U, Melinte-Dobrinescu M, Sames B, Yılmaz Ö. Advances and perspectives in understanding Cretaceous sea-level change. Palaeogeogr Palaeoclimatol Palaeoecol, 2016, 441: 391-392 CrossRef Google Scholar

[57] Wendler I, Wendler J E, Clarke L J. Sea-level reconstruction for Turonian sediments from Tanzania based on integration of sedimentology, microfacies, geochemistry and micropaleontology. Palaeogeogr Palaeoclimatol Palaeoecol, 2016, 441: 528-564 CrossRef Google Scholar

[58] Wendler J E, Wendler I. What drove sea-level fluctuations during the mid-Cretaceous greenhouse climate?. Palaeogeogr Palaeoclimatol Palaeoecol, 2016, 441: 412-419 CrossRef Google Scholar

[59] Wiese F, Čech S, Ekrt B, Košt'ák M, Mazuch M, Voigt S. The Upper Turonian of the Bohemian Cretaceous Basin (Czech Republic) exemplified by the Úpohlavy working quarry: Integrated stratigraphy and palaeoceanography of a gateway to the Tethys. Cretac Res, 2004, 25: 329-352 CrossRef Google Scholar

[60] Wilmsen M, Nagm E. Sequence stratigraphy of the lower Upper Cretaceous (Upper Cenomanian – Turonian) of the Eastern Desert, Egypt. Newsl Stratigr, 2013, 46: 23-46 CrossRef Google Scholar

[61] Wilson P A, Norris R D, Cooper M J. Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise. Geology, 2002, 30: 607-610 CrossRef Google Scholar

  • Figure 1

    Upper Cenomanian–Turonian ammonite and inoceramid biozones and previously identified sea level fall events identified as unconformities (wavy pattern) and sequence boundaries (numbered events) that include third-order events labeled in bold. Diagonal pattern represents missing time and/or missing section. Age estimates for Northwest European ammonite zones are from Ogg and Hinnov (2012). Positions of hiatuses (wavy lines) estimated from relative position in biozone used for regional correlation. Dashed biozones and hiatuses may have significant age uncertainty. Labels and disconformities shown for some of the sequence boundary events were used in the original publications. References include: 1, Haq (2014); 2, Joo and Sageman (2014); 3, Sageman et al. (1998); 4, Miller et al. (2004); 5, Gale (1996); 6, Hardenbol et al. (1998) and Hardenbol and Robaszynski (1998); 7, Voigt and Hilbrecht (1997); 8, Wilmsen and Nagm (2013); 9, Sahagian et al. (1996). Abbreviations are as follows: Ang. = Aristrocrat Angus core; Port. = USGS #1 Portland core; Mark. Plat. = Markagunt Plateau; N.J. Cst. Pl. = New Jersey Coastal Plain; Anc. = Ancora core; Bass = Bass River core; NW Euro. = Northwest Europe; Salz.-Sald. = Salzgitter-Salder quarry. See cited publications for full spelling of biozones.

  • Table 1   Various mechanisms that can modify local/regional (eurybatic) and global (eustatic) measures of sea levels, their time scales, their magnitude of change, and their extent

    Mechanism

    Operative time scales

    Magnitude of change

    Potential extent

    Water sequestration on land

    1) Terrestrial acquifers and lakes

    <0.01 Myr

    up to 100 m

    Global

    2) Glaciations/deglaciations

    0.01−0.1 Myr

    100−250 m

    Global

    3) Water exchange with mantle

    ?0.1−1.0 Myr

    Unknown

    ?Global

    Changes in container capacity of oceans

    1) GIA a) elastic rebound

    0.000001 Myr

    up to 100 m

    Regional

    b) viscous mantle flow

    0.0001−0.1 Myr

    2) Mean age of oceanic crust

    50−100 Myr

    100−300 m

    Global

    3) Ridge production rate changes

    50−100 Myr

    4) Ocean floor volcanic activity (LIPS)

    1−10 Myr

    500−1000 m

    Global

    5) Mantle/Lithosphere interactions

    1−10 Myr

    10−100 m

    Regional/Global

    6) Intraplate deformation

    1−10 Myr

    10−1000 m

    Regional/Global

    7) Dynamic topography

    >5 Myr

    up to 1000 m

    Regional/Global

    8) Sedimentation

    1−10 Myr

    50−100 m

    Global

    GIA: Glacial Isostatic Adjustment. After Cloetingh and Haq (2015).

qqqq

Contact and support