logo

SCIENCE CHINA Life Sciences, Volume 64 , Issue 11 : 1964-1976(2021) https://doi.org/10.1007/s11427-020-1770-1

Removal of roosters alters the domestic phenotype and microbial and genetic profile of hens

More info
  • ReceivedMay 1, 2020
  • AcceptedJul 14, 2020
  • PublishedFeb 4, 2021

Abstract


Acknowledgment

We express sincere thanks to Mr. Fengqi Lu, Mr. Liang Xu, Mr. Weitian Qi, Ms. Mingting Li (Lvdudu Ecological Farm), and Ms. Wan Jia (China Agricultural University) for their great help with the experiment. This work was funded by Guangdong Basic and Applied Basic Research Foundation (2019A1515110453), Foundation for Key Laboratory (2019KSYS011) and Creative Team (2019KCXTD006) in Guangdong Higher Education Institutes, the Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding (2019B030301010), the Joint Projects of Guizhou Nayong Professor Workstation (201705510410352), and the Scientific Research Start-up Fund for High-level Talents of Foshan University (CGG07154). The funding bodies contributed nothing to the study design, data analyses, data interpretation, or manuscript preparation.


Interest statement

The author(s) declare that they have no conflict of interest.


Supplement

SUPPORTING INFORMATION

The supporting information is available online at https://doi.org/10.1007/s11427-020-1770-1. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Agnvall B., Ali A., Olby S., Jensen P.. Red Junglefowl (Gallus gallus) selected for low fear of humans are larger, more dominant and produce larger offspring. Animal, 2014, 8: 1498-1505 CrossRef PubMed Google Scholar

[2] Agnvall B., Jöngren M., Strandberg E., Jensen P.. Heritability and genetic correlations of fear-related behaviour in red junglefowl-possible implications for early domestication. PLoS ONE, 2012, 7: e35162 CrossRef PubMed ADS Google Scholar

[3] Agnvall B., Katajamaa R., Altimiras J., Jensen P.. Is domestication driven by reduced fear of humans? Boldness, metabolism and serotonin levels in divergently selected red junglefowl (Gallus gallus). Biol Lett, 2015, 11: 20150509 CrossRef PubMed Google Scholar

[4] Al-Nasser A., Al-Khalaifa H., Al-Saffar A., Khalil F., Albahouh M., Ragheb G., Al-Haddad A., Mashaly M.. Overview of chicken taxonomy and domestication. World Poultry Sci J, 2007, 63: 285-300 CrossRef Google Scholar

[5] Anders S., Huber W.. Differential expression analysis for sequence count data. Genome Biol, 2010, 11: R106 CrossRef PubMed Google Scholar

[6] Bailey M.T., Dowd S.E., Parry N.M.A., Galley J.D., Schauer D.B., Lyte M.. Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by citrobacter rodentium. Infect Immun, 2010, 78: 1509-1519 CrossRef PubMed Google Scholar

[7] Bélteky J., Agnvall B., Johnsson M., Wright D., Jensen P.. Domestication and tameness: brain gene expression in red junglefowl selected for less fear of humans suggests effects on reproduction and immunology. R Soc Open Sci, 2016, 3: 160033 CrossRef PubMed ADS Google Scholar

[8] Branciari R., Mugnai C., Mammoli R., Miraglia D., Ranucci D., Dal Bosco A., Castellini C.. Effect of genotype and rearing system on chicken behavior and muscle fiber characteristics. J Anim Sci, 2009, 87: 4109-4117 CrossRef PubMed Google Scholar

[9] Campler M., Jöngren M., Jensen P.. Fearfulness in red junglefowl and domesticated White Leghorn chickens. Behav Proc, 2009, 81: 39-43 CrossRef PubMed Google Scholar

[10] Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Peña A.G., Goodrich J.K., Gordon J.I., et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 2010, 7: 335-336 CrossRef PubMed Google Scholar

[11] Chen S., Xiang H., Zhang H., Zhu X., Wang D., Wang J., Yin T., Liu L., Kong M., Li H., et al. Rearing system causes changes of behavior, microbiome, and gene expression of chickens. Poultry Sci, 2019, 98: 3365-3376 CrossRef PubMed Google Scholar

[12] Chen S., Xiang H., Zhu X., Zhang H., Wang D., Liu H., Wang J., Yin T., Liu L., Kong M., et al. Free dietary choice and free-range rearing improve the product quality, gait score, and microbial richness of chickens. Animals, 2018, 8: 84 CrossRef PubMed Google Scholar

[13] Collias N.E., Collias E.C.. A field study of the red jungle fowl in North-Central India. Condor, 1967, 69: 360-386 CrossRef Google Scholar

[14] Corr, S.A., Gentle, M.J., McCorquodale, C.C., and Bennett, D. (2003). The effect of morphology on the musculoskeletal system of the modern broiler. Anim Welfare 12, 145–157. Google Scholar

[15] Duggan B.M., Hocking P.M., Schwarz T., Clements D.N.. Differences in hindlimb morphology of ducks and chickens: effects of domestication and selection. Genet Sel Evol, 2015, 47: 88 CrossRef PubMed Google Scholar

[16] Edgar R.C.. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods, 2013, 10: 996-998 CrossRef PubMed Google Scholar

[17] Edgar R.C., Haas B.J., Clemente J.C., Quince C., Knight R.. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 2011, 27: 2194-2200 CrossRef PubMed Google Scholar

[18] Elfwing M., Nätt D., Goerlich-Jansson V.C., Persson M., Hjelm J., Jensen P.. Early stress causes sex-specific, life-long changes in behaviour, levels of gonadal hormones, and gene expression in chickens. PLoS ONE, 2015, 10: e0125808 CrossRef PubMed ADS Google Scholar

[19] Ericsson M., Fallahsharoudi A., Bergquist J., Kushnir M.M., Jensen P.. Domestication effects on behavioural and hormonal responses to acute stress in chickens. Physiol Behav, 2014, 133: 161-169 CrossRef PubMed Google Scholar

[20] Ericsson M., Jensen P.. Domestication and ontogeny effects on the stress response in young chickens (Gallus gallus). Sci Rep, 2016, 6: 35818 CrossRef PubMed ADS Google Scholar

[21] Eriksson J., Larson G., Gunnarsson U., Bed'hom B., Tixier-Boichard M., Strömstedt L., Wright D., Jungerius A., Vereijken A., Randi E., et al. Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genet, 2008, 4: e1000010 CrossRef PubMed Google Scholar

[22] Favati A., Leimar O., Løvlie H.. Personality predicts social dominance in male domestic fowl. PLoS ONE, 2014, 9: e103535 CrossRef PubMed ADS Google Scholar

[23] Favati A., Zidar J., Thorpe H., Jensen P., Løvlie H.. The ontogeny of personality traits in the red junglefowl, Gallus gallus. Behav Ecol, 2016, 27: 484-493 CrossRef Google Scholar

[24] Forkman B., Boissy A., Meunier-Salaün M.C., Canali E., Jones R.B.. A critical review of fear tests used on cattle, pigs, sheep, poultry and horses. Physiol Behav, 2007, 92: 340-374 CrossRef PubMed Google Scholar

[25] Hicks K.M., Onambele-Pearson G.L., Winwood K., Morse C.I.. Muscle-tendon unit properties during eccentric exercise correlate with the creatine kinase response. Front Physiol, 2017, 8: 657 CrossRef PubMed Google Scholar

[26] Jackson S., Diamond J.. Metabolic and digestive responses to artificial selection in chickens. Evolution, 1996, 50: 1638-1650 CrossRef PubMed Google Scholar

[27] Janczak A.M., Riber A.B.. Review of rearing-related factors affecting the welfare of laying hens. Poultry Sci, 2015, 94: 1454-1469 CrossRef PubMed Google Scholar

[28] Jensen P.. Behaviour epigenetics—The connection between environment, stress and welfare. Appl Anim Behav Sci, 2014, 157: 1-7 CrossRef Google Scholar

[29] Jöngren M., Westander J., Nätt D., Jensen P.. Brain gene expression in relation to fearfulness in female red junglefowl (Gallus gallus). Genes Brain Behav, 2010, 9: 751-758 CrossRef PubMed Google Scholar

[30] Kuhne F., Sauerbrey A.F.C., Adler S.. The discrimination-learning task determines the kind of frustration-related behaviours in laying hens (Gallus gallus domesticus). Appl Anim Behav Sci, 2013, 148: 192-200 CrossRef Google Scholar

[31] Langmead B., Salzberg S.L.. Fast gapped-read alignment with Bowtie 2. Nat Methods, 2012, 9: 357-359 CrossRef PubMed Google Scholar

[32] Lee H.J., Jang M., Kim H., Kwak W., Park W.C., Hwang J.Y., Lee C.K., Jang G.W., Park M.N., Kim H.C., et al. Comparative transcriptome analysis of adipose tissues reveals that ECM-receptor interaction is involved in the depot-specific adipogenesis in cattle. PLoS ONE, 2013, 8: e66267 CrossRef PubMed ADS Google Scholar

[33] Lehtinen M.K., Yuan Z., Boag P.R., Yang Y., Villén J., Becker E.B.E., DiBacco S., de la Iglesia N., Gygi S., Blackwell T.K., et al. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell, 2006, 125: 987-1001 CrossRef PubMed Google Scholar

[34] Looney W.J., Narita M., Mühlemann K.. Stenotrophomonas maltophilia: an emerging opportunist human pathogen. Lancet Infect Dis, 2009, 9: 312-323 CrossRef Google Scholar

[35] Magoč T., Salzberg S.L.. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27: 2957-2963 CrossRef PubMed Google Scholar

[36] Marchi, D.F., Santilli, J.C., Soares, A.L., Santos, G.R.D., Oba, A., Shimokomaki, M., and Ida, E.I. (2012). Creatine kinase and lactate dehydrogenase activities for stress animal identification and chicken PSE (pale, soft, exudative) meat. Semin Cienc Agrar 33, 3103–3109. Google Scholar

[37] Moreng, R.E., and Avens, J.S. (1985). Poultry science and production (Reston: Reston Publishing Company). Google Scholar

[38] Munukka E., Rintala A., Toivonen R., Nylund M., Yang B., Takanen A., Hänninen A., Vuopio J., Huovinen P., Jalkanen S., et al. Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice. ISME J, 2017, 11: 1667-1679 CrossRef PubMed Google Scholar

[39] Okpokho N.A., Craig J.V.. Fear-related behavior of hens in cages: effects of rearing environment, age, and habituation. Poultry Sci, 1987, 66: 376-377 CrossRef PubMed Google Scholar

[40] Parks D.H., Tyson G.W., Hugenholtz P., Beiko R.G.. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics, 2014, 30: 3123-3124 CrossRef PubMed Google Scholar

[41] Pedro R.E., Candido N., Guariglia D.A., Melo B.P., Bertolini D.A., Peres S.B., Franzói de Moraes S.M.. Exercise improves cytokine profile in HIV-infected people: A randomized clinical trial. Cytokine, 2017, 99: 18-23 CrossRef PubMed Google Scholar

[42] Pizzari T.. Food, vigilance, and sperm: the role of male direct benefits in the evolution of female preference in a polygamous bird. Behav Ecol, 2003, 14: 593-601 CrossRef Google Scholar

[43] Price E.O.. Behavioral development in animals undergoing domestication. Appl Anim Behav Sci, 1999, 65: 245-271 CrossRef Google Scholar

[44] Romanov M.N., Weigend S.. Analysis of genetic relationships between various populations of domestic and jungle fowl using microsatellite markers. Poultry Sci, 2001, 80: 1057-1063 CrossRef PubMed Google Scholar

[45] Roth L.S.V., Lind O.. The impact of domestication on the chicken optical apparatus. PLoS ONE, 2013, 8: e65509 CrossRef PubMed ADS Google Scholar

[46] Roy P., Bandyopadhyay A.. Spatio-temporally restricted expression of cell adhesion molecules during chicken embryonic development. PLoS ONE, 2014, 9: e96837 CrossRef PubMed ADS Google Scholar

[47] Sasaguri K., Yamada K., Narimatsu Y., Oonuki M., Oishi A., Koda K., Kubo K.Y., Yamamoto T., Kadoya T.. Stress-induced galectin-1 influences immune tolerance in the spleen and thymus by modulating CD45 immunoreactive lymphocytes. J Physiol Sci, 2017, 67: 489-496 CrossRef PubMed Google Scholar

[48] Schütz K.E., Kerje S., Jacobsson L., Forkman B., Carlborg Ö., Andersson L., Jensen P.. Major growth QTLs in fowl are related to fearful behavior: possible genetic links between fear responses and production traits in a red junglefowl×white leghorn intercross. Behav Genet, 2004, 34: 121-130 CrossRef Google Scholar

[49] Smith C.L., Johnson J.. The chicken challenge – what contemporary studies of fowl mean for science and ethics. Betw Species, 2012, 15 CrossRef Google Scholar

[50] Trapnell C., Pachter L., Salzberg S.L.. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 2009, 25: 1105-1111 CrossRef PubMed Google Scholar

[51] Van Goor A., Ashwell C.M., Persia M.E., Rothschild M.F., Schmidt C.J., Lamont S.J.. Unique genetic responses revealed in RNA-seq of the spleen of chickens stimulated with lipopolysaccharide and short-term heat. PLoS ONE, 2017, 12: e0171414 CrossRef PubMed ADS Google Scholar

[52] Weeks C.A., Nicol C.J.. Behavioural needs, priorities and preferences of laying hens. World Poultry Sci J, 2006, 62: 296-307 CrossRef Google Scholar

[53] Xiang H., Chen S., Zhang H., Zhu X., Wang D., Liu H., Wang J., Yin T., Liu L., Kong M., et al. Transcriptome changes provide genetic insights into the effects of rearing systems on chicken welfare and product quality. J Anim Sci, 2018, 96: 4552-4561 CrossRef PubMed Google Scholar

[54] Xiang H., Gao J., Yu B., Zhou H., Cai D., Zhang Y., Chen X., Wang X., Hofreiter M., Zhao X.. Early Holocene chicken domestication in northern China. Proc Natl Acad Sci USA, 2014, 111: 17564-17569 CrossRef PubMed ADS Google Scholar

[55] Zhang P., Yan T., Wang X., Kuang S., Xiao Y., Lu W., Bi D.. Probiotic mixture ameliorates heat stress of laying hens by enhancing intestinal barrier function and improving gut microbiota. Italian J Anim Sci, 2017, 16: 292-300 CrossRef Google Scholar

[56] Zimmerman P.H., Buijs S.A.F., Bolhuis J.E., Keeling L.J.. Behaviour of domestic fowl in anticipation of positive and negative stimuli. Anim Behav, 2011, 81: 569-577 CrossRef Google Scholar

  • Figure 1

    Comparison of behavior patterns between the caged hens living without (R–C) and with (R+C) roosters. The value of the vertical axis indicates the proportion of time budget for different behavior.

  • Figure 2

    Injuries of hens from different groups. A, Gait scores. B, Footpad dermatitis scores. C, Feather condition scores. R–F, hens in free-range without roosters; R+F, hens in free-range with roosters; R–C, caged hens from R– rearing pens; R+C, caged hens from R+ rearing pens. The value of the vertical axis indicates the proportion of injury scores for different groups. The number of observations (n) =30 per group.

  • Figure 3

    Gut microbiome structure. A, Beta diversity by non-metric multidimensional scaling. B, The gut microbiome richness based on the number of observed species. R–F, hens in free-range without roosters; R+F, hens in free-range with roosters; R–C, caged hens from R– rearing pens; R+C, caged hens from R+ rearing pens. The number of observations (n) =10 per group.

  • Figure 4

    Differential functions of the gut microbiome between hens living with or without roosters. A, Different functions between R–F and R+F hens. B, Differences between R–C and R+C hens. The abbreviation C indicates the pathway catalog of cellular processes; E, environmental information processing; H, human diseases; M, metabolism; O, organismal systems; U, unclassified pathways. R–F, hens in free-range without roosters; R+F, hens in free-range with roosters; R–C, caged hens from R– rearing pens; R+C, caged hens from R+ rearing pens.

  • Figure 5

    The most differentiated GO terms between hens living without (R–F) and with (R+F) roosters. Figure (A) shows data from thigh muscle and (B) from spleen tissue. Upregulated/downregulated genes are in R–F birds as compared to R+F birds. The abbreviation BP indicates the GO term catalog of biological processes; CC, cellular components; MF, molecular function.

  • Figure 6

    The most differentiated GO terms between the R–C and R+C hens in thigh muscle. R–C, caged hens from R– rearing pens; R+C, caged hens from R+ rearing pens. The upregulated/downregulated genes are in R–C as compared to R+C. The abbreviation BP indicates the GO term catalog of biological processes; CC, cellular components; MF, molecular function.

  • Table 1   Production performance of R– and R+ hens between days 140 and 280a)

    Items

    R– (n=100)

    R+ (n=100)

    Body weight at Day 280 (kg)

    1.82±0.25

    1.88±0.18

    Average feed consumption (g/chicken/day)

    75.10±10.33a

    101.12±12.65b

    Average egg weight (g)

    45.49±4.71

    44.51±4.94

    Average laying rate (%)

    37.45±9.48a

    43.09±10.85b

    Feed/egg

    4.63±0.87a

    5.75±1.37b

    Mortality (%)

    5

    10

    Values with different superscripts are statistically different at P<0.05. R+, hens housed with roosters; R–, hens housed without roosters.

  • Table 2   Comparison of physiological indicators for each treatment group recorded at day 315a)

    Items

    R–F (n=25)

    R+F (n=28)

    R–C (n=24)

    R+C (n=24)

    GRA (%)

    21.05±1.21

    20.98±3.70

    19.76±2.16

    18.89±2.28

    MON (%)

    6.25±1.16

    5.62±0.30

    5.61±0.44

    6.03±1.42

    HGB (g L–1)

    154.33±17.88a

    154.82±11.87a

    163.61±16.58b

    161.07±17.38ab

    PLT (×109 L–1)

    107.54±63.15

    123.03±79.31

    148.12±63.19

    137.13±64.87

    LYM (%)

    71.88±4.09

    73.73±2.01

    73.29±3.75

    74.98±2.97

    RBC (×1012 L–1)

    2.60±0.36a

    2.65±0.22ab

    2.81±0.33b

    2.76±0.30ab

    MCH (pg)

    58.54±2.30

    58.40±2.05

    57.70±1.80

    58.39±2.11

    MCHC (g L–1)

    522.83±22.53

    517.93±15.20

    517.81±13.79

    523.96±15.36

    MCV (fL)

    112.15±4.86

    113.48±3.85

    112.06±5.11

    111.05±4.39

    CK (U L–1)

    650.16±242.44a

    869.07±253.46b

    834.45±232.22b

    776.68±202.98ab

    P (mg mL–1)

    2.40±0.40

    2.78±0.75

    2.86±0.90

    2.94±1.08

    IgA (mg mL–1)

    0.26±0.09

    0.29±0.10

    0.29±0.10

    0.28±0.08

    IgG (mg mL–1)

    0.30±0.16

    0.28±0.10

    0.33±0.16

    0.27±0.13

    IgM (mg mL–1)

    0.48±0.29

    0.48±0.30

    0.59±0.36

    0.56±0.28

    Values with different superscripts are statistically different at P<0.05. R–F, hens in free-range without roosters; R+F, hens in free-range with roosters; R–C, caged hens from R–F rearing pens; R+C, caged hens from R+F rearing pens. LYM, lymphocyte; MON, monocyte; GRA, granulocytes; HGB, hemoglobin; PLT, platelets; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; RBC, red blood cell count; MCV, mean red cell volume; CK, creatine kinase; P, inorganic phosphorus; IgA, IgG and IgM are immunoglobulins.

  • Table 3   Treatment differences in gut microbes at the genus and species levelsa)

    Comparison

    Level

    Poorer in the former group

    Count

    Richer in the former group

    Count

    R–F vs. R+F

    Genera

    Acinetobacter; Aminobacter; Bacillus; Bradyrhizobium;Corynebacterium; Enhydrobacter; Halomonas;Hydrogenophaga; Janthinobacterium; Jeotgalicoccus;Kaistobacter; Lactococcus; Pediococcus; Pseudomonas;Psychrobacter; Shewanella; SMB53; Sphingomonas;Stenotrophomonas

    19

    Faecalibacterium

    1

    Species

    Algae; Cereus; Flexus; Garvieae; Pulmonis; Viridiflava;Yabuuchiae

    7

    Prausnitzii

    1

    R+C vs. R+F

    Genera

    Arthrobacter; Psychrobacter

    2

    0

    Species

    Pulmonis

    1

    Prausnitzii

    1

    R–C vs. R–F

    Genera

    Alistipes; Anaerotruncus; Arthrobacter; Bacteroides; Parabacteroides; Butyricimonas; Paraprevotella; Facklamia; p-75-a5

    9

    Anaerobiospirillum; Anaerostipes; Ruminococcus; Hydrogenophaga

    4

    Species

    Massiliensis

    1

    0

    R–C vs. R+C

    Genera

    Aerococcus; cc_115; Jeotgalicoccus; Parabacteroides

    4

    Aeriscardovia

    1

    Species

    0

    Aeriphila

    1

    R–F, hens in free-range without roosters; R+F, hens in free-range with roosters; R–C, caged hens from R– rearing pens; R+C, caged hens from R+ rearing pens.

  • Table 4   The differential KEGG pathways between treatment groupsa)

    Comparison

    Sample

    KEGG pathway

    Enrichment

    P value

    R–F vs. R+F

    Thigh muscle

    FoxO signaling pathway

    3.82

    0.018

    insulin resistance

    3.98

    0.034

    insulin signaling pathway

    5.31

    0.001

    Spleen

    focal adhesion

    3.36

    0.000

    regulation of actin cytoskeleton

    2.33

    0.003

    endocytosis

    1.86

    0.018

    ECM-receptor interaction

    4.23

    0.000

    cell adhesion molecules (CAMs)

    3.07

    0.001

    cytokine-cytokine receptor interaction

    2.34

    0.004

    R–C vs. R–F

    Thigh muscle

    phagosome

    2.87

    0.033

    proteasome

    12.80

    0.000

    ribosome biogenesis in eukaryotes

    4.66

    0.008

    insulin signaling pathway

    3.56

    0.006

    Spleen

    none

    R+C vs. R+F

    Thigh muscle

    phagosome

    3.63

    0.001

    focal adhesion

    2.46

    0.018

    proteasome

    5.04

    0.043

    dorso-ventral axis formation

    8.24

    0.011

    Spleen

    none

    R–C vs. R+C

    Thigh muscle

    FoxO signaling pathway

    3.20

    0.036

    Spleen

    none

    R–F, hens in free-range without roosters; R+F, hens in free-range with roosters; R–C, caged hens from R– rearing pens; R+C, caged hens from R+ rearing pens.

qqqq

Contact and support