logo

More info
  • ReceivedFeb 3, 2020
  • AcceptedMar 17, 2020
  • PublishedMar 31, 2020

Abstract


Interest statement

The author(s) declare that they have no conflict of interest.


References

[1] Achard P., Gong F., Cheminant S., Alioua M., Hedden P., Genschik P.. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell, 2008, 202117-2129 CrossRef PubMed Google Scholar

[2] Agarwal M., Hao Y., Kapoor A., Dong C.H., Fujii H., Zheng X., Zhu J.K.. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem, 2006, 28137636-37645 CrossRef PubMed Google Scholar

[3] Ali A., Kim J.K., Jan M., Khan H.A., Khan I.U., Shen M., Park J., Lim C.J., Hussain S., Baek D., et al. Rheostatic control of ABA signaling through HOS15-mediated OST1 degradation. Mol Plant, 2019a, 121447-1462 CrossRef PubMed Google Scholar

[4] Ali A., Maggio A., Bressan R.A., Yun D.J.. Role and Functional Differences of HKT1-Type Transporters in Plants under Salt Stress. Int J Med Sci, 2019b, 201059 CrossRef PubMed Google Scholar

[5] Amzal B., Julin B., Vahter M., Wolk A., Johanson G., Akesson A.. Population toxicokinetic modeling of cadmium for health risk assessment. Environ Health Perspectives, 2009, 1171293-1301 CrossRef PubMed Google Scholar

[6] Andrés Z., Pérez-Hormaeche J., Leidi E.O., Schlücking K., Steinhorst L., McLachlan D.H., Schumacher K., Hetherington A.M., Kudla J., Cubero B., et al. Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. Proc Natl Acad Sci USA, 2014, 111E1806-E1814 CrossRef PubMed ADS Google Scholar

[7] Apse M.P., Aharon G.S., Snedden W.A., Blumwald E.. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 1999, 2851256-1258 CrossRef PubMed Google Scholar

[8] Bac-Molenaar J.A., Fradin E.F., Becker F.F.M., Rienstra J.A., van der Schoot J., Vreugdenhil D., Keurentjes J.J.B.. Genome-wide association mapping of fertility reduction upon heat stress reveals developmental stage-specific QTLs in Arabidopsis thaliana. Plant Cell, 2015, 271857-1874 CrossRef PubMed Google Scholar

[9] Baek D., Jiang J., Chung J.S., Wang B., Chen J., Xin Z., Shi H.. Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance. Plant Cell Physiol, 2011, 52149-161 CrossRef PubMed Google Scholar

[10] Bai Y., Müller D.B., Srinivas G., Garrido-Oter R., Potthoff E., Rott M., Dombrowski N., Münch P.C., Spaepen S., Remus-Emsermann M., et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature, 2015, 528364-369 CrossRef ADS Google Scholar

[11] Balzergue C., Dartevelle T., Godon C., Laugier E., Meisrimler C., Teulon J.M., Creff A., Bissler M., Brouchoud C., Hagège A., et al. Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation. Nat Commun, 2017, 815300 CrossRef PubMed ADS Google Scholar

[12] Baniwal S.K., Chan K.Y., Scharf K.D., Nover L.. Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4. J Biol Chem, 2007, 2823605-3613 CrossRef PubMed Google Scholar

[13] Banti V., Mafessoni F., Loreti E., Alpi A., Perata P.. The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiol, 2010, 1521471-1483 CrossRef PubMed Google Scholar

[14] Barnabás B., Jäger K., Fehér A.. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ, 2008, 3111-38 CrossRef PubMed Google Scholar

[15] Barragán V., Leidi E.O., Andrés Z., Rubio L., De Luca A., Fernández J.A., Cubero B., Pardo J.M.. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell, 2012, 241127-1142 CrossRef PubMed Google Scholar

[16] Bassil E., Ohto M., Esumi T., Tajima H., Zhu Z., Cagnac O., Belmonte M., Peleg Z., Yamaguchi T., Blumwald E.. The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant Cell, 2011a, 23224-239 CrossRef PubMed Google Scholar

[17] Bassil E., Tajima H., Liang Y.C., Ohto M.A., Ushijima K., Nakano R., Esumi T., Coku A., Belmonte M., Blumwald E.. The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell, 2011b, 233482-3497 CrossRef PubMed Google Scholar

[18] Baxter A., Mittler R., Suzuki N.. ROS as key players in plant stress signalling. J Exp Bot, 2014, 651229-1240 CrossRef PubMed Google Scholar

[19] Baxter I.. Should we treat the ionome as a combination of individual elements, or should we be deriving novel combined traits?. J Exp Bot, 2015, 662127-2131 CrossRef PubMed Google Scholar

[20] Belda-Palazon B., Rodriguez L., Fernandez M.A., Castillo M.C., Anderson E.M., Gao C., Gonzalez-Guzman M., Peirats-Llobet M., Zhao Q., De Winne N., et al. FYVE1/FREE1 interacts with the PYL4 ABA receptor and mediates its delivery to the vacuolar degradation pathway. Plant Cell, 2016, 282291-2311 CrossRef PubMed Google Scholar

[21] Berthomieu P., Conejero G., Nublat A., Brackenbury W.J., Lambert C., Savio C., Uozumi N., Oiki S., Yamada K., Cellier F., et al. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J, 2003, 222004-2014 CrossRef Google Scholar

[22] Bhaskara G.B., Wen T.N., Nguyen T.T., Verslues P.E.. Protein phosphatase 2Cs and microtubule-associated stress protein 1 control microtubule stability, plant growth, and drought response. Plant Cell, 2017, 29169-191 CrossRef PubMed Google Scholar

[23] Bloom A.J., Lancaster K.M.. Manganese binding to Rubisco could drive a photorespiratory pathway that increases the energy efficiency of photosynthesis. Nat Plants, 2018, 4414-422 CrossRef PubMed Google Scholar

[24] Blumwald E., Poole R.J.. Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant Physiol, 1985, 78163-167 CrossRef PubMed Google Scholar

[25] Boeynaems S., Alberti S., Fawzi N.L., Mittag T., Polymenidou M., Rousseau F., Schymkowitz J., Shorter J., Wolozin B., Van Den Bosch L., et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol, 2018, 28420-435 CrossRef PubMed Google Scholar

[26] Bothe, H. (2011). Plants in heavy metal soils. In Detoxification of Heavy Metals (Springer), pp. 35–57. Google Scholar

[27] Brandt B., Brodsky D.E., Xue S., Negi J., Iba K., Kangasjärvi J., Ghassemian M., Stephan A.B., Hu H., Schroeder J.I.. Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proc Natl Acad Sci USA, 2012, 10910593-10598 CrossRef PubMed ADS Google Scholar

[28] Bueso E., Rodriguez L., Lorenzo-Orts L., Gonzalez-Guzman M., Sayas E., Muñoz-Bertomeu J., Ibañez C., Serrano R., Rodriguez P.L.. The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. Plant J, 2014, 801057-1071 CrossRef PubMed Google Scholar

[29] Burla B., Pfrunder S., Nagy R., Francisco R.M., Lee Y., Martinoia E.. Vacuolar transport of abscisic acid glucosyl ester is mediated by ATP-binding cassette and proton-antiport mechanisms in Arabidopsis. Plant Physiol, 2013, 1631446-1458 CrossRef PubMed Google Scholar

[30] Busch F.A., Sage R.F., Farquhar G.D.. Plants increase CO2 uptake by assimilating nitrogen via the photorespiratory pathway. Nat Plants, 2018, 446-54 CrossRef PubMed Google Scholar

[31] Busoms S., Paajanen P., Marburger S., Bray S., Huang X.Y., Poschenrieder C., Yant L., Salt D.E.. Fluctuating selection on migrant adaptive sodium transporter alleles in coastal Arabidopsis thaliana. Proc Natl Acad Sci USA, 2018, 115E12443-E12452 CrossRef PubMed Google Scholar

[32] Bustos R., Castrillo G., Linhares F., Puga M.I., Rubio V., Pérez-Pérez J., Solano R., Leyva A., Paz-Ares J.. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet, 2010, 6e1001102 CrossRef PubMed Google Scholar

[33] Byrt C.S., Platten J.D., Spielmeyer W., James R.A., Lagudah E.S., Dennis E.S., Tester M., Munns R.. HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol, 2007, 1431918-1928 CrossRef PubMed Google Scholar

[34] Byrt C.S., Zhao M., Kourghi M., Bose J., Henderson S.W., Qiu J., Gilliham M., Schultz C., Schwarz M., Ramesh S.A., et al. Non-selective cation channel activity of aquaporin AtPIP2;1 regulated by Ca2+ and pH. Plant Cell Environ, 2017, 40802-815 CrossRef PubMed Google Scholar

[35] Cai C., Lanman N.A., Withers K.A., DeLeon A.M., Wu Q., Gribskov M., Salt D.E., Banks J.A.. Three genes define a bacterial-like arsenic tolerance mechanism in the arsenic hyperaccumulating fern Pteris vittata. Curr Biol, 2019, 291625-1633.e3 CrossRef PubMed Google Scholar

[36] Campbell M.T., Bandillo N., Al Shiblawi F.R.A., Sharma S., Liu K., Du Q., Schmitz A.J., Zhang C., Véry A.A., Lorenz A.J., et al. Allelic variants of OsHKT1;1 underlie the divergence between indica and japonica subspecies of rice (Oryza sativa) for root sodium content. PLoS Genet, 2017, 13e1006823 CrossRef PubMed Google Scholar

[37] Cao Y., Feng H., Sun D., Xu G., Rathinasabapathi B., Chen Y., Ma L.Q.. Heterologous Expression of Pteris vittata Phosphate Transporter PvPht1;3 Enhances Arsenic Translocation to and Accumulation in Tobacco Shoots. Environ Sci Technol, 2019, 5310636-10644 CrossRef PubMed ADS Google Scholar

[38] Castillo M.C., Lozano-Juste J., González-Guzmán M., Rodriguez L., Rodriguez P.L., León J.. Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Sci Signal, 2015, 8ra89 CrossRef Google Scholar

[39] Castrillo G., Teixeira P.J.P.L., Paredes S.H., Law T.F., de Lorenzo L., Feltcher M.E., Finkel O.M., Breakfield N.W., Mieczkowski P., Jones C.D., et al. Root microbiota drive direct integration of phosphate stress and immunity. Nature, 2017, 543513-518 CrossRef PubMed ADS Google Scholar

[40] Cavrak V.V., Lettner N., Jamge S., Kosarewicz A., Bayer L.M., Mittelsten Scheid O.. How a retrotransposon exploits the plant’s heat stress response for its activation. PLoS Genet, 2014, 10e1004115 CrossRef PubMed Google Scholar

[41] Chan Z., Wang Y., Cao M., Gong Y., Mu Z., Wang H., Hu Y., Deng X., He X.J., Zhu J.K.. RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway. New Phytol, 2016, 2091527-1539 CrossRef PubMed Google Scholar

[42] Chao D.Y., Chen Y., Chen J., Shi S., Chen Z., Wang C., Danku J.M., Zhao F.J., Salt D.E.. Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol, 2014, 12e1002009 CrossRef PubMed Google Scholar

[43] Chao D.Y., Silva A., Baxter I., Huang Y.S., Nordborg M., Danku J., Lahner B., Yakubova E., Salt D.E.. Genome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thaliana. PLoS Genet, 2012, 8e1002923 CrossRef PubMed Google Scholar

[44] Chen C., Chen H., Lin Y.S., Shen J.B., Shan J.X., Qi P., Shi M., Zhu M.Z., Huang X.H., Feng Q., et al. A two-locus interaction causes interspecific hybrid weakness in rice. Nat Commun, 2014, 53357 CrossRef PubMed ADS Google Scholar

[45] Chen D.H., Liu H.P., Li C.L.. Calcium-dependent protein kinase CPK9 negatively functions in stomatal abscisic acid signaling by regulating ion channel activity in Arabidopsis. Plant Mol Biol, 2019a, 99113-122 CrossRef PubMed Google Scholar

[46] Chen H.H., Qu L., Xu Z.H., Zhu J.K., Xue H.W.. EL1-like casein kinases suppress ABA signaling and responses by phosphorylating and destabilizing the ABA receptors PYR/PYLs in Arabidopsis. Mol Plant, 2018, 11706-719 CrossRef PubMed Google Scholar

[47] Chen J., Yu F., Liu Y., Du C., Li X., Zhu S., Wang X., Lan W., Rodriguez P.L., Liu X., et al. FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis. Proc Natl Acad Sci USA, 2016, 113E5519-E5527 CrossRef PubMed Google Scholar

[48] Chen Y., Hua C.Y., Chen J.X., Rathinasabapathi B., Cao Y., Ma L.Q.. Expressing arsenite antiporter PvACR3;1 in rice (Oryza sativa L.) decreases inorganic arsenic content in rice grains. Environ Sci Technol, 2019b, 5310062-10069 CrossRef PubMed ADS Google Scholar

[49] Chen Y., Sun S.K., Tang Z., Liu G., Moore K.L., Maathuis F.J.M., Miller A.J., McGrath S.P., Zhao F.J.. The Nodulin 26-like intrinsic membrane protein OsNIP3;2 is involved in arsenite uptake by lateral roots in rice. J Exp Bot, 2017a, 683007-3016 CrossRef PubMed Google Scholar

[50] Chen Z.C., Yamaji N., Horie T., Che J., Li J., An G., Ma J.F.. A magnesium transporter OsMGT1 plays a critical role in salt tolerance in rice. Plant Physiol, 2017b, 1741837-1849 CrossRef PubMed Google Scholar

[51] Cheng C., Wang Z., Ren Z., Zhi L., Yao B., Su C., Liu L., Li X.. SCFAtPP2-B11 modulates ABA signaling by facilitating SnRK2.3 degradation in Arabidopsis thaliana. PLoS Genet, 2017, 13e1006947 CrossRef PubMed Google Scholar

[52] Chinnusamy V., Ohta M., Kanrar S., Lee B.H., Hong X., Agarwal M., Zhu J.K.. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev, 2003, 171043-1054 CrossRef PubMed Google Scholar

[53] Christmann A., Hoffmann T., Teplova I., Grill E., Müller A.. Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis. Plant Physiol, 2005, 137209-219 CrossRef PubMed Google Scholar

[54] Clemens S., Aarts M.G.M., Thomine S., Verbruggen N.. Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci, 2013, 1892-99 CrossRef PubMed Google Scholar

[55] Cohen-Peer R., Schuster S., Meiri D., Breiman A., Avni A.. Sumoylation of Arabidopsis heat shock factor A2 (HsfA2) modifies its activity during acquired thermotholerance. Plant Mol Biol, 2010, 7433-45 CrossRef PubMed Google Scholar

[56] Collins, L.J., Schonfeld, B., and Chen, X.S. (2011). The epigenetics of non-coding RNA. In Handbook of Epigenetics: The New Molecular and Medical Genetics (Academic Press), pp. 49–61. Google Scholar

[57] Compant S., Samad A., Faist H., Sessitsch A.. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J Adv Res, 2019, 1929-37 CrossRef PubMed Google Scholar

[58] Corratgé-Faillie C., Ronzier E., Sanchez F., Prado K., Kim J.H., Lanciano S., Leonhardt N., Lacombe B., Xiong T.C.. The Arabidopsis guard cell outward potassium channel GORK is regulated by CPK33. FEBS Lett, 2017, 5911982-1992 CrossRef PubMed Google Scholar

[59] Crisp P.A., Ganguly D., Eichten S.R., Borevitz J.O., Pogson B.J.. Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. Sci Adv, 2016, 2e1501340 CrossRef PubMed Google Scholar

[60] Cui P., Xiong L.. Environmental stress and pre-mRNA splicing. Mol Plant, 2015, 81302-1303 CrossRef PubMed Google Scholar

[61] Cutler S.R., Rodriguez P.L., Finkelstein R.R., Abrams S.R.. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol, 2010, 61651-679 CrossRef PubMed Google Scholar

[62] Dall’Osto L., Cazzaniga S., North H., Marion-Poll A., Bassi R.. The Arabidopsis aba4-1 mutant reveals a specific function for neoxanthin in protection against photooxidative stress. Plant Cell, 2007, 191048-1064 CrossRef PubMed Google Scholar

[63] Davletova S., Rizhsky L., Liang H., Shengqiang Z., Oliver D.J., Coutu J., Shulaev V., Schlauch K., Mittler R.. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell, 2005, 17268-281 CrossRef PubMed Google Scholar

[64] De Angeli A., Zhang J., Meyer S., Martinoia E.. AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis. Nat Commun, 2013, 41804 CrossRef PubMed ADS Google Scholar

[65] Demidchik V., Shabala S., Isayenkov S., Cuin T.A., Pottosin I.. Calcium transport across plant membranes: mechanisms and functions. New Phytol, 2018, 22049-69 CrossRef PubMed Google Scholar

[66] Demir F., Horntrich C., Blachutzik J.O., Scherzer S., Reinders Y., Kierszniowska S., Schulze W.X., Harms G.S., Hedrich R., Geiger D., et al. Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Proc Natl Acad Sci USA, 2013, 1108296-8301 CrossRef PubMed ADS Google Scholar

[67] Diaz M., Sanchez-Barrena M.J., Gonzalez-Rubio J.M., Rodriguez L., Fernandez D., Antoni R., Yunta C., Belda-Palazon B., Gonzalez-Guzman M., Peirats-Llobet M., et al. Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling. Proc Natl Acad Sci USA, 2016, 113E396-E405 CrossRef PubMed ADS Google Scholar

[68] Ding Y., Jia Y., Shi Y., Zhang X., Song C., Gong Z., Yang S.. OST 1-mediated BTF 3L phosphorylation positively regulates CBFs during plant cold responses. EMBO J, 2018, 37 CrossRef PubMed Google Scholar

[69] Ding Y., Li H., Zhang X., Xie Q., Gong Z., Yang S.. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell, 2015, 32278-289 CrossRef PubMed Google Scholar

[70] Ding Y., Lv J., Shi Y., Gao J., Hua J., Song C., Gong Z., Yang S.. EGR 2 phosphatase regulates OST 1 kinase activity and freezing tolerance in Arabidopsis. EMBO J, 2019, 38e99819 CrossRef PubMed Google Scholar

[71] Dobermann, A., and Fairhurst, T. (2000). Rice: Nutrient Disorders and Nutrient Management (Potash & Phosphate Institute (PPI), Potash & Phosphate Institute of Canada (PPIC) and International Rice Research Institute (IRRI)). Google Scholar

[72] Doherty C.J., Van Buskirk H.A., Myers S.J., Thomashow M.F.. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell, 2009, 21972-984 CrossRef PubMed Google Scholar

[73] Dong C.H., Agarwal M., Zhang Y., Xie Q., Zhu J.K.. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA, 2006, 1038281-8286 CrossRef PubMed ADS Google Scholar

[74] Dong H., Bai L., Zhang Y., Zhang G., Mao Y., Min L., Xiang F., Qian D., Zhu X., Song C.P.. Modulation of guard cell turgor and drought tolerance by a peroxisomal acetate–malate shunt. Mol Plant, 2018, 111278-1291 CrossRef PubMed Google Scholar

[75] Dong J., Ma G., Sui L., Wei M., Satheesh V., Zhang R., Ge S., Li J., Zhang T.E., Wittwer C., et al. Inositol pyrophosphate InsP8 acts as an intracellular phosphate signal in Arabidopsis. Mol Plant, 2019, 121463-1473 CrossRef PubMed Google Scholar

[76] Dong M.A., Farré E.M., Thomashow M.F.. Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proc Natl Acad Sci USA, 2011, 1087241-7246 CrossRef PubMed ADS Google Scholar

[77] Duszyn M., Świeżawska B., Szmidt-Jaworska A., Jaworski K.. Cyclic nucleotide gated channels (CNGCs) in plant signalling—Current knowledge and perspectives. J Plant Physiol, 2019, 241153035 CrossRef PubMed Google Scholar

[78] Eisenach C., Baetz U., Huck N.V., Zhang J., De Angeli A., Beckers G.J.M., Martinoia E.. ABA-induced stomatal closure involves ALMT4, a phosphorylation-dependent vacuolar anion channel of Arabidopsis. Plant Cell, 2017, 292552-2569 CrossRef PubMed Google Scholar

[79] Eisenhut M., Roell M.S., Weber A.P.M.. Mechanistic understanding of photorespiration paves the way to a new green revolution. New Phytol, 2019, 2231762-1769 CrossRef PubMed Google Scholar

[80] El Mahi H., Pérez-Hormaeche J., De Luca A., Villalta I., Espartero J., Gámez-Arjona F., Fernández J.L., Bundó M., Mendoza I., Mieulet D., et al. A critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice. Plant Physiol, 2019, 1801046-1065 CrossRef PubMed Google Scholar

[81] Eleftheriou E.P., Adamakis I.D.S., Panteris E., Fatsiou M.. Chromium-induced ultrastructural changes and oxidative stress in roots of Arabidopsis thaliana. Int J Med Sci, 2015, 1615852-15871 CrossRef PubMed Google Scholar

[82] Eremina M., Unterholzner S.J., Rathnayake A.I., Castellanos M., Khan M., Kugler K.G., May S.T., Mayer K.F.X., Rozhon W., Poppenberger B.. Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proc Natl Acad Sci USA, 2016, 113E5982-E5991 CrossRef PubMed Google Scholar

[83] Essah P.A., Davenport R., Tester M.. Sodium influx and accumulation in Arabidopsis. Plant Physiol, 2003, 133307-318 CrossRef PubMed Google Scholar

[84] Fabiańska I., Gerlach N., Almario J., Bucher M.. Plant-mediated effects of soil phosphorus on the root-associated fungal microbiota in Arabidopsis thaliana. New Phytol, 2019, 2212123-2137 CrossRef PubMed Google Scholar

[85] Falcone D.L., Ogas J.P., Somerville C.R.. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol, 2004, 417 CrossRef PubMed Google Scholar

[86] Fan S.K., Fang X.Z., Guan M.Y., Ye Y.Q., Lin X.Y., Du S.T., Jin C.W.. Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake. Front Plant Sci, 2014, 5721 CrossRef PubMed Google Scholar

[87] Fang X., Zhao G., Zhang S., Li Y., Gu H., Li Y., Zhao Q., Qi Y.. Chloroplast-to-nucleus signaling regulates microRNA biogenesis in Arabidopsis. Dev Cell, 2019, 48371-382.e4 CrossRef PubMed Google Scholar

[88] Fang Y., Liao K., Du H., Xu Y., Song H., Li X., Xiong L.. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot, 2015, 666803-6817 CrossRef PubMed Google Scholar

[89] Farooq M.A., Ali S., Hameed A., Bharwana S.A., Rizwan M., Ishaque W., Farid M., Mahmood K., Iqbal Z.. Cadmium stress in cotton seedlings: Physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. South African J Bot, 2016, 10461-68 CrossRef Google Scholar

[90] Feng C.Z., Chen Y., Wang C., Kong Y.H., Wu W.H., Chen Y.F.. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. Plant J, 2014, 80654-668 CrossRef PubMed Google Scholar

[91] Feng J., Chen L., Zuo J.. Protein S-nitrosylation in plants: Current progresses and challenges. J Integr Plant Biol, 2019, 611206-1223 CrossRef PubMed Google Scholar

[92] Feng W., Kita D., Peaucelle A., Cartwright H.N., Doan V., Duan Q., Liu M.C., Maman J., Steinhorst L., Schmitz-Thom I., et al. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol, 2018, 28666-675.e5 CrossRef PubMed Google Scholar

[93] Finkelstein R.R.. Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations. Plant J, 1994, 5765-771 CrossRef Google Scholar

[94] Finkelstein R.R., Gampala S.S.L., Rock C.D.. Abscisic acid signaling in seeds and seedlings. Plant Cell, 2002, 14S15-S45 CrossRef PubMed Google Scholar

[95] Finkelstein R.R., Lynch T.J.. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell, 2000, 12599-609 CrossRef PubMed Google Scholar

[96] Finkelstein R.R., Li Wang M., Lynch T.J., Rao S., Goodman H.M.. The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain protein. Plant Cell, 1998, 101043-1054 CrossRef PubMed Google Scholar

[97] Fliegel L.. Structural and functional changes in the Na+/H+ exchanger isoform 1, induced by Erk1/2 phosphorylation. Int J Med Sci, 2019, 202378 CrossRef PubMed Google Scholar

[98] Franklin K.A., Whitelam G.C.. Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nat Genet, 2007, 391410-1413 CrossRef PubMed Google Scholar

[99] Fujii H., Chinnusamy V., Rodrigues A., Rubio S., Antoni R., Park S.Y., Cutler S.R., Sheen J., Rodriguez P.L., Zhu J.K.. In vitro reconstitution of an abscisic acid signalling pathway. Nature, 2009, 462660-664 CrossRef PubMed ADS Google Scholar

[100] Fujii H., Verslues P.E., Zhu J.K.. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell, 2007, 19485-494 CrossRef PubMed Google Scholar

[101] Fujii H., Zhu J.K.. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc Natl Acad Sci USA, 2009, 1068380-8385 CrossRef PubMed ADS Google Scholar

[102] Fujii Y., Tanaka H., Konno N., Ogasawara Y., Hamashima N., Tamura S., Hasegawa S., Hayasaki Y., Okajima K., Kodama Y.. Phototropin perceives temperature based on the lifetime of its photoactivated state. Proc Natl Acad Sci USA, 2017, 1149206-9211 CrossRef PubMed Google Scholar

[103] Fujita Y., Fujita M., Satoh R., Maruyama K., Parvez M.M., Seki M., Hiratsu K., Ohme-Takagi M., Shinozaki K., Yamaguchi-Shinozaki K.. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 2005, 173470-3488 CrossRef PubMed Google Scholar

[104] Fujita Y., Nakashima K., Yoshida T., Katagiri T., Kidokoro S., Kanamori N., Umezawa T., Fujita M., Maruyama K., Ishiyama K., et al. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol, 2009, 502123-2132 CrossRef PubMed Google Scholar

[105] Gao F., Han X., Wu J., Zheng S., Shang Z., Sun D., Zhou R., Li B.. A heat-activated calcium-permeable channel—Arabidopsis cyclic nucleotide-gated ion channel 6—is involved in heat shock responses. Plant J, 2012, 701056-1069 CrossRef PubMed Google Scholar

[106] Gao H., Brandizzi F., Benning C., Larkin R.M.. A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2008, 10516398-16403 CrossRef PubMed ADS Google Scholar

[107] Gao X.Q., Li C.G., Wei P.C., Zhang X.Y., Chen J., Wang X.C.. The dynamic changes of tonoplasts in guard cells are important for stomatal movement in Vicia faba. Plant Physiol, 2005, 1391207-1216 CrossRef PubMed Google Scholar

[108] Gaxiola R.A., Rao R., Sherman A., Grisafi P., Alper S.L., Fink G.R.. The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA, 1999, 961480-1485 CrossRef PubMed ADS Google Scholar

[109] Ge K., Liu X., Li X., Hu B., Li L.. Isolation of an ABA transporter-like 1 gene from Arachis hypogaea that affects ABA import and reduces ABA sensitivity in Arabidopsis. Front Plant Sci, 2017, 81150 CrossRef PubMed Google Scholar

[110] Geiger D., Maierhofer T., Al-Rasheid K.A.S., Scherzer S., Mumm P., Liese A., Ache P., Wellmann C., Marten I., Grill E., et al. Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci Signal, 2011, 4ra32 CrossRef PubMed Google Scholar

[111] Geiger D., Scherzer S., Mumm P., Marten I., Ache P., Matschi S., Liese A., Wellmann C., Al-Rasheid K.A.S., Grill E., et al. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci USA, 2010, 1078023-8028 CrossRef PubMed ADS Google Scholar

[112] Geiger D., Scherzer S., Mumm P., Stange A., Marten I., Bauer H., Ache P., Matschi S., Liese A., Al-Rasheid K.A.S., et al. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci USA, 2009, 10621425-21430 CrossRef PubMed ADS Google Scholar

[113] Gilmour S.J., Sebolt A.M., Salazar M.P., Everard J.D., Thomashow M.F.. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol, 2000, 1241854-1865 CrossRef PubMed Google Scholar

[114] Gilmour S.J., Zarka D.G., Stockinger E.J., Salazar M.P., Houghton J.M., Thomashow M.F.. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J, 1998, 16433-442 CrossRef PubMed Google Scholar

[115] Giraudat J., Hauge B.M., Valon C., Smalle J., Parcy F., Goodman H.M.. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell, 1992, 41251 CrossRef Google Scholar

[116] Gong M., van der Luit A.H., Knight M.R., Trewavas A.J.. Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol, 1998, 116429-437 CrossRef Google Scholar

[117] Gong Z., Dong C.H., Lee H., Zhu J., Xiong L., Gong D., Stevenson B., Zhu J.K.. A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell, 2005, 17256-267 CrossRef PubMed Google Scholar

[118] González-Guzmán M., Apostolova N., Bellés J.M., Barrero J.M., Piqueras P., Ponce M.R., Micol J.L., Serrano R., Rodríguez P.L.. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell, 2002, 141833-1846 CrossRef PubMed Google Scholar

[119] Grabov A., Blatt M.R.. Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells. Proc Natl Acad Sci USA, 1998, 954778-4783 CrossRef PubMed ADS Google Scholar

[120] Grondin A., Rodrigues O., Verdoucq L., Merlot S., Leonhardt N., Maurel C.. Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. Plant Cell, 2015, 271945-1954 CrossRef PubMed Google Scholar

[121] Guan Q., Lu X., Zeng H., Zhang Y., Zhu J.. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J, 2013a, 74840-851 CrossRef PubMed Google Scholar

[122] Guan Q., Wu J., Zhang Y., Jiang C., Liu R., Chai C., Zhu J.. A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. Plant Cell, 2013b, 25342-356 CrossRef PubMed Google Scholar

[123] Guan Q., Yue X., Zeng H., Zhu J.. The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress-esponsive gene regulation and thermotolerance in Arabidopsis. Plant Cell, 2014, 26438-453 CrossRef PubMed Google Scholar

[124] Guo B., Liu C., Li H., Yi K., Ding N., Li N., Lin Y., Fu Q.. Endogenous salicylic acid is required for promoting cadmium tolerance of Arabidopsis by modulating glutathione metabolisms. J Hazard Mater, 2016, 31677-86 CrossRef PubMed Google Scholar

[125] Guo X., Liu D., Chong K.. Cold signaling in plants: Insights into mechanisms and regulation. J Integr Plant Biol, 2018, 60745-756 CrossRef PubMed Google Scholar

[126] Guo Y., Halfter U., Ishitani M., Zhu J.K.. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell, 2001, 131383-1400 CrossRef Google Scholar

[127] Gutiérrez-Alanís D., Yong-Villalobos L., Jiménez-Sandoval P., Alatorre-Cobos F., Oropeza-Aburto A., Mora-Macías J., Sánchez-Rodríguez F., Cruz-Ramírez A., Herrera-Estrella L.. Phosphate starvation-dependent iron mobilization induces CLE14 expression to trigger root meristem differentiation through CLV2/PEPR2 sgnaling. Dev Cell, 2017, 41555-570.e3 CrossRef PubMed Google Scholar

[128] Hahn A., Bublak D., Schleiff E., Scharf K.D.. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell, 2011, 23741-755 CrossRef PubMed Google Scholar

[129] Hamamoto S., Horie T., Hauser F., Deinlein U., Schroeder J.I., Uozumi N.. HKT transporters mediate salt stress resistance in plants: from structure and function to the field. Curr Opin Biotech, 2015, 32113-120 CrossRef PubMed Google Scholar

[130] Hamilton D.W.A., Hills A., Blatt M.R.. Extracellular Ba2+ and voltage interact to gate Ca2+ channels at the plasma membrane of stomatal guard cells. FEBS Lett, 2001, 49199-103 CrossRef Google Scholar

[131] Hamilton D.W.A., Hills A., Kohler B., Blatt M.R.. Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA, 2000, 974967-4972 CrossRef PubMed ADS Google Scholar

[132] Hamilton E.S., Schlegel A.M., Haswell E.S.. United in diversity: mechanosensitive ion channels in plants. Annu Rev Plant Biol, 2015, 66113-137 CrossRef PubMed Google Scholar

[133] Han J.P., Köster P., Drerup M.M., Scholz M., Li S., Edel K.H., Hashimoto K., Kuchitsu K., Hippler M., Kudla J.. Fine-tuning of RBOHF activity is achieved by differential phosphorylation and Ca2+ binding. New Phytol, 2019, 2211935-1949 CrossRef PubMed Google Scholar

[134] Hanikenne M., Talke I.N., Haydon M.J., Lanz C., Nolte A., Motte P., Kroymann J., Weigel D., Krämer U.. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature, 2008, 453391-395 CrossRef PubMed ADS Google Scholar

[135] Haruta M., Sabat G., Stecker K., Minkoff B.B., Sussman M.R.. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science, 2014, 343408-411 CrossRef PubMed ADS Google Scholar

[136] Hayashi S., Kuramata M., Abe T., Takagi H., Ozawa K., Ishikawa S.. Phytochelatin synthase OsPCS1 plays a crucial role in reducing arsenic levels in rice grains. Plant J, 2017, 91840-848 CrossRef PubMed Google Scholar

[137] Hewezi T., Piya S., Qi M., Balasubramaniam M., Rice J.H., Baum T.J.. Arabidopsis miR827 mediates post-transcriptional gene silencing of its ubiquitin E3 ligase target gene in the syncytium of the cyst nematode Heterodera schachtii to enhance susceptibility. Plant J, 2016, 88179-192 CrossRef PubMed Google Scholar

[138] Ho C.H., Lin S.H., Hu H.C., Tsay Y.F.. CHL1 functions as a nitrate sensor in plants. Cell, 2009, 1381184-1194 CrossRef PubMed Google Scholar

[139] Hong J.H., Savina M., Du J., Devendran A., Kannivadi Ramakanth K., Tian X., Sim W.S., Mironova V.V., Xu J.. A sacrifice-for-survival mechanism protects root stem cell niche from chilling stress. Cell, 2017, 170102-113.e14 CrossRef PubMed Google Scholar

[140] Horie T., Costa A., Kim T.H., Han M.J., Horie R., Leung H.Y., Miyao A., Hirochika H., An G., Schroeder J.I.. Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J, 2007, 263003-3014 CrossRef PubMed Google Scholar

[141] Hou C., Tian W., Kleist T., He K., Garcia V., Bai F., Hao Y., Luan S., Li L.. DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes. Cell Res, 2014, 24632-635 CrossRef PubMed Google Scholar

[142] Hu B., Chu C.. Nitrogen-phosphorus interplay: old story with molecular tale. New Phytol, 2020, 2251455-1460 CrossRef PubMed Google Scholar

[143] Hu B., Jiang Z., Wang W., Qiu Y., Zhang Z., Liu Y., Li A., Gao X., Liu L., Qian Y., et al. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat Plants, 2019, 5401-413 CrossRef PubMed Google Scholar

[144] Hu H., Dai M., Yao J., Xiao B., Li X., Zhang Q., Xiong L.. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 10312987-12992 CrossRef PubMed ADS Google Scholar

[145] Hu Y., Jiang L., Wang F., Yu D.. Jasmonate regulates the inducer of CBF expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell, 2013, 252907-2924 CrossRef PubMed Google Scholar

[146] Hua D., Wang C., He J., Liao H., Duan Y., Zhu Z., Guo Y., Chen Z., Gong Z.. A Plasma Membrane Receptor Kinase, GHR1, Mediates Abscisic Acid- and Hydrogen Peroxide-Regulated Stomatal Movement in Arabidopsis. Plant Cell, 2012, 242546-2561 CrossRef PubMed Google Scholar

[147] Huang A.C., Jiang T., Liu Y.X., Bai Y.C., Reed J., Qu B., Goossens A., Nützmann H.W., Bai Y., Osbourn A.. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science, 2019, 364eaau6389 CrossRef PubMed Google Scholar

[148] Huang S., Spielmeyer W., Lagudah E.S., James R.A., Platten J.D., Dennis E.S., Munns R.. A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol, 2006, 1421718-1727 CrossRef PubMed Google Scholar

[149] Hussain D., Haydon M.J., Wang Y., Wong E., Sherson S.M., Young J., Camakaris J., Harper J.F., Cobbett C.S.. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell, 2004, 161327-1339 CrossRef PubMed Google Scholar

[150] Ikeda M., Mitsuda N., Ohme-Takagi M.. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol, 2011, 1571243-1254 CrossRef PubMed Google Scholar

[151] Imes D., Mumm P., Böhm J., Al-Rasheid K.A.S., Marten I., Geiger D., Hedrich R.. Open stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells. Plant J, 2013, 74372-382 CrossRef PubMed Google Scholar

[152] Irigoyen M.L., Iniesto E., Rodriguez L., Puga M.I., Yanagawa Y., Pick E., Strickland E., Paz-Ares J., Wei N., De Jaeger G., et al. Targeted degradation of abscisic acid receptors is mediated by the ubiquitin ligase substrate adaptor DDA1 in Arabidopsis. Plant Cell, 2014, 26712-728 CrossRef PubMed Google Scholar

[153] Isayenkov S.V., Maathuis F.J.M.. Plant salinity stress: many unanswered questions remain. Front Plant Sci, 2019, 1080 CrossRef PubMed Google Scholar

[154] Ishikawa S., Ishimaru Y., Igura M., Kuramata M., Abe T., Senoura T., Hase Y., Arao T., Nishizawa N.K., Nakanishi H.. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci USA, 2012, 10919166-19171 CrossRef PubMed ADS Google Scholar

[155] Isner J.C., Begum A., Nuehse T., Hetherington A.M., Maathuis F.J.M.. KIN7 kinase regulates the vacuolar TPK1 K+ channel during stomatal closure. Curr Biol, 2018, 28466-472.e4 CrossRef PubMed Google Scholar

[156] Iuchi S., Kobayashi M., Taji T., Naramoto M., Seki M., Kato T., Tabata S., Kakubari Y., Yamaguchi-Shinozaki K., Shinozaki K.. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J, 2001, 27325-333 CrossRef PubMed Google Scholar

[157] Jablonska E., Socha K., Reszka E., Wieczorek E., Skokowski J., Kalinowski L., Fendler W., Seroczynska B., Wozniak M., Borawska M.H., et al. Cadmium, arsenic, selenium and iron—Implications for tumor progression in breast cancer. Environ Toxicol Pharmacol, 2017, 53151-157 CrossRef PubMed Google Scholar

[158] Jafari A., Kamarehie B., Ghaderpoori M., Khoshnamvand N., Birjandi M.. The concentration data of heavy metals in Iranian grown and imported rice and human health hazard assessment. Data Brief, 2018, 16453-459 CrossRef PubMed Google Scholar

[159] Jaglo-Ottosen K.R., Gilmour S.J., Zarka D.G., Schabenberger O., Thomashow M.F.. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280104-106 CrossRef PubMed ADS Google Scholar

[160] James R.A., Davenport R.J., Munns R.. Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol, 2006, 1421537-1547 CrossRef PubMed Google Scholar

[161] Jammes F., Song C., Shin D., Munemasa S., Takeda K., Gu D., Cho D., Lee S., Giordo R., Sritubtim S., et al. MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci USA, 2009, 10620520-20525 CrossRef PubMed ADS Google Scholar

[162] Jia Y., Ding Y., Shi Y., Zhang X., Gong Z., Yang S.. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol, 2016, 212345-353 CrossRef PubMed Google Scholar

[163] Jiang B., Shi Y., Zhang X., Xin X., Qi L., Guo H., Li J., Yang S.. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proc Natl Acad Sci USA, 2017, 114E6695-E6702 CrossRef PubMed Google Scholar

[164] Jiang Z., Zhou X., Tao M., Yuan F., Liu L., Wu F., Wu X., Xiang Y., Niu Y., Liu F., et al. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature, 2019, 572341-346 CrossRef PubMed ADS Google Scholar

[165] Jojoa-Cruz S., Saotome K., Murthy S.E., Tsui C.C.A., Sansom M.S., Patapoutian A., Ward A.B.. Cryo-EM structure of the mechanically activated ion channel OSCA1.2. eLife, 2018, 7e41845 CrossRef PubMed Google Scholar

[166] Jung J.H., Domijan M., Klose C., Biswas S., Ezer D., Gao M., Khattak A.K., Box M.S., Charoensawan V., Cortijo S., et al. Phytochromes function as thermosensors in Arabidopsis. Science, 2016, 354886-889 CrossRef PubMed ADS Google Scholar

[167] Kamiya T., Tanaka M., Mitani N., Ma J.F., Maeshima M., Fujiwara T.. NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem, 2009, 2842114-2120 CrossRef PubMed Google Scholar

[168] Kang J., Hwang J.U., Lee M., Kim Y.Y., Assmann S.M., Martinoia E., Lee Y.. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci USA, 2010, 1072355-2360 CrossRef PubMed ADS Google Scholar

[169] Karmous I., Trevisan R., El Ferjani E., Chaoui A., Sheehan D.. Redox biology response in germinating Phaseolus vulgaris seeds exposed to copper: Evidence for differential redox buffering in seedlings and cotyledon. PLoS ONE, 2017, 12e0184396 CrossRef PubMed ADS Google Scholar

[170] Katiyar-Agarwal S., Zhu J., Kim K., Agarwal M., Fu X., Huang A., Zhu J.K.. The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl Acad Sci USA, 2006, 10318816-18821 CrossRef PubMed ADS Google Scholar

[171] Khan G.A., Vogiatzaki E., Glauser G., Poirier Y.. Phosphate deficiency induces the jasmonate pathway and enhances resistance to insect herbivory. Plant Physiol, 2016, 171632-644 CrossRef PubMed Google Scholar

[172] Kiba T., Inaba J., Kudo T., Ueda N., Konishi M., Mitsuda N., Takiguchi Y., Kondou Y., Yoshizumi T., Ohme-Takagi M., et al. Repression of nitrogen starvation responses by members of the Arabidopsis GARP-type transcription factor NIGT1/HRS1 subfamily. Plant Cell, 2018, 30925-945 CrossRef PubMed Google Scholar

[173] Kidokoro S., Maruyama K., Nakashima K., Imura Y., Narusaka Y., Shinwari Z.K., Osakabe Y., Fujita Y., Mizoi J., Shinozaki K., et al. The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol, 2009, 1512046-2057 CrossRef PubMed Google Scholar

[174] Kidokoro S., Yoneda K., Takasaki H., Takahashi F., Shinozaki K., Yamaguchi-Shinozaki K.. Different cold-signaling pathways function in the responses to rapid and gradual decreases in temperature. Plant Cell, 2017, 29760-774 CrossRef PubMed Google Scholar

[175] Kim H.J., Hyun Y., Park J.Y., Park M.J., Park M.K., Kim M.D., Kim H.J., Lee M.H., Moon J., Lee I., et al. A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nat Genet, 2004a, 36167-171 CrossRef PubMed Google Scholar

[176] Kim J.M., Sasaki T., Ueda M., Sako K., Seki M.. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front Plant Sci, 2015, 6114 CrossRef PubMed Google Scholar

[177] Kim J.S., Mizoi J., Kidokoro S., Maruyama K., Nakajima J., Nakashima K., Mitsuda N., Takiguchi Y., Ohme-Takagi M., Kondou Y., et al. Arabidopsis GROWTH-REGULATING FACTOR7 functions as a transcriptional repressor of abscisic acid- and osmotic stress-responsive genes, including DREB2A. Plant Cell, 2012, 243393-3405 CrossRef PubMed Google Scholar

[178] Kim S., Kang J.Y., Cho D.I., Park J.H., Kim S.Y.. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J, 2004b, 4075-87 CrossRef PubMed Google Scholar

[179] Kim T.H., Böhmer M., Hu H., Nishimura N., Schroeder J.I.. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol, 2010, 61561-591 CrossRef PubMed Google Scholar

[180] Kim W.Y., Ali Z., Park H.J., Park S.J., Cha J.Y., Perez-Hormaeche J., Quintero F.J., Shin G., Kim M.R., Qiang Z., et al. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat Commun, 2013, 41352 CrossRef PubMed ADS Google Scholar

[181] Kim W.Y., Fujiwara S., Suh S.S., Kim J., Kim Y., Han L., David K., Putterill J., Nam H.G., Somers D.E.. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature, 2007, 449356-360 CrossRef PubMed ADS Google Scholar

[182] Kindgren P., Ard R., Ivanov M., Marquardt S.. Transcriptional read-through of the long non-coding RNA SVALKA governs plant cold acclimation. Nat Commun, 2018, 94561 CrossRef PubMed ADS Google Scholar

[183] Knight H., Trewavas A.J., Knight M.R.. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation.. Plant Cell, 1996, 8489-503 CrossRef PubMed Google Scholar

[184] Kobayashi A., Takahashi A., Kakimoto Y., Miyazawa Y., Fujii N., Higashitani A., Takahashi H.. A gene essential for hydrotropism in roots. Proc Natl Acad Sci USA, 2007, 1044724-4729 CrossRef PubMed ADS Google Scholar

[185] Kobayashi N.I., Yamaji N., Yamamoto H., Okubo K., Ueno H., Costa A., Tanoi K., Matsumura H., Fujii-Kashino M., Horiuchi T., et al. OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. Plant J, 2017, 91657-670 CrossRef PubMed Google Scholar

[186] Kong L., Cheng J., Zhu Y., Ding Y., Meng J., Chen Z., Xie Q., Guo Y., Li J., Yang S., et al. Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases. Nat Commun, 2015, 68630 CrossRef PubMed ADS Google Scholar

[187] Königshofer H., Tromballa H.W., Löppert H.G.. Early events in signalling high-temperature stress in tobacco BY2 cells involve alterations in membrane fluidity and enhanced hydrogen peroxide production. Plant Cell Environ, 2008, 311771-1780 CrossRef PubMed Google Scholar

[188] Koornneef M., Jorna M.L., Brinkhorst-van der Swan D.L.C., Karssen C.M.. The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) heynh.. Theoret Appl Genet, 1982, 61385-393 CrossRef PubMed Google Scholar

[189] Koornneef M., Reuling G., Karssen C.M.. The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant, 1984, 61377-383 CrossRef Google Scholar

[190] Koprivova A., Schuck S., Jacoby R.P., Klinkhammer I., Welter B., Leson L., Martyn A., Nauen J., Grabenhorst N., Mandelkow J.F., et al. Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. Proc Natl Acad Sci USA, 2019, 11615735-15744 CrossRef PubMed Google Scholar

[191] Kotak S., Larkindale J., Lee U., von Koskull-Döring P., Vierling E., Scharf K.D.. Complexity of the heat stress response in plants. Curr Opin Plant Biol, 2007a, 10310-316 CrossRef PubMed Google Scholar

[192] Kotak S., Vierling E., Bäumlein H., von Koskull-Döring P.. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell, 2007b, 19182-195 CrossRef PubMed Google Scholar

[193] Kragelund B.B., Jensen M.K., Skriver K.. Order by disorder in plant signaling. Trends Plant Sci, 2012, 17625-632 CrossRef PubMed Google Scholar

[194] Krochko J.E., Abrams G.D., Loewen M.K., Abrams S.R., Cutler A.J.. (+)-Abscisic acid 8′-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol, 1998, 118849-860 CrossRef PubMed Google Scholar

[195] Kudla J., Becker D., Grill E., Hedrich R., Hippler M., Kummer U., Parniske M., Romeis T., Schumacher K.. Advances and current challenges in calcium signaling. New Phytol, 2018, 218414-431 CrossRef PubMed Google Scholar

[196] Kumar D., Kumar R., Baek D., Hyun T.K., Chung W.S., Yun D.J., Kim J.Y.. Arabidopsis thaliana RECEPTOR DEAD KINASE1 functions as a positive regulator in plant responses to ABA. Mol Plant, 2017, 10223-243 CrossRef PubMed Google Scholar

[197] Kumar S.V., Wigge P.A.. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell, 2010, 140136-147 CrossRef PubMed Google Scholar

[198] Kuromori T., Miyaji T., Yabuuchi H., Shimizu H., Sugimoto E., Kamiya A., Moriyama Y., Shinozaki K.. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci USA, 2010, 1072361-2366 CrossRef PubMed ADS Google Scholar

[199] Kuromori T., Sugimoto E., Shinozaki K.. Arabidopsis mutants of AtABCG22, an ABC transporter gene, increase water transpiration and drought susceptibility. Plant J, 2011, 67885-894 CrossRef PubMed Google Scholar

[200] Kushiro T., Okamoto M., Nakabayashi K., Yamagishi K., Kitamura S., Asami T., Hirai N., Koshiba T., Kamiya Y., Nambara E.. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J, 2004, 231647-1656 CrossRef PubMed Google Scholar

[201] Larkindale J., Hall J.D., Knight M.R., Vierling E.. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol, 2005, 138882-897 CrossRef PubMed Google Scholar

[202] Larkindale J., Huang B.. Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol, 2004, 161405-413 CrossRef PubMed Google Scholar

[203] Larsson S.C., Orsini N., Wolk A.. Urinary cadmium concentration and risk of breast cancer: a systematic review and dose-response meta-analysis. Am J Epidemiol, 2015, 182375-380 CrossRef PubMed Google Scholar

[204] Lee B., Kapoor A., Zhu J., Zhu J.K.. STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell, 2006a, 181736-1749 CrossRef PubMed Google Scholar

[205] Lee C.M., Thomashow M.F.. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2012, 10915054-15059 CrossRef PubMed ADS Google Scholar

[206] Lee K.H., Piao H.L., Kim H.Y., Choi S.M., Jiang F., Hartung W., Hwang I., Kwak J.M., Lee I.J., Hwang I.. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell, 2006b, 1261109-1120 CrossRef PubMed Google Scholar

[207] Lee U., Rioflorido I., Hong S.W., Larkindale J., Waters E.R., Vierling E.. The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. Plant J, 2007, 49115-127 CrossRef PubMed Google Scholar

[208] Legris M., Klose C., Burgie E.S., Rojas C.C.R., Neme M., Hiltbrunner A., Wigge P.A., Schäfer E., Vierstra R.D., Casal J.J.. Phytochrome B integrates light and temperature signals in Arabidopsis. Science, 2016, 354897-900 CrossRef PubMed ADS Google Scholar

[209] Lei G.J., Sun L., Sun Y., Zhu X.F., Li G.X., Zheng S.J.. Jasmonic acid alleviates cadmium toxicity in Arabidopsis via suppression of cadmium uptake and translocation. J Integr Plant Biol, 2020, 62218-227 CrossRef PubMed Google Scholar

[210] Leung J., Bouvier-Durand M., Morris P.C., Guerrier D., Chefdor F., Giraudat J.. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science, 1994, 2641448-1452 CrossRef PubMed ADS Google Scholar

[211] Leung J., Merlot S., Giraudat J.. The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell, 1997, 9759 CrossRef Google Scholar

[212] Li B., Gao Z., Liu X., Sun D., Tang W.. Transcriptional Profiling Reveals a Time-of-Day-Specific Role of REVEILLE 4/8 in Regulating the First Wave of Heat Shock–Induced Gene Expression in Arabidopsis. Plant Cell, 2019a, 312353-2369 CrossRef PubMed Google Scholar

[213] Li H., Ding Y., Shi Y., Zhang X., Zhang S., Gong Z., Yang S.. MPK3- and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis. Dev Cell, 2017a, 43630-642.e4 CrossRef PubMed Google Scholar

[214] Li H., Ye K., Shi Y., Cheng J., Zhang X., Yang S.. BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis. Mol Plant, 2017b, 10545-559 CrossRef PubMed Google Scholar

[215] Li H., Li Y., Zhao Q., Li T., Wei J., Li B., Shen W., Yang C., Zeng Y., Rodriguez P.L., et al. The plant ESCRT component FREE1 shuttles to the nucleus to attenuate abscisic acid signalling. Nat Plants, 2019b, 5512-524 CrossRef PubMed Google Scholar

[216] Li S., Tian Y., Wu K., Ye Y., Yu J., Zhang J., Liu Q., Hu M., Li H., Tong Y., et al. Modulating plant growth–metabolism coordination for sustainable agriculture. Nature, 2018a, 560595-600 CrossRef PubMed ADS Google Scholar

[217] Li W., de Ollas C., Dodd I.C.. Long-distance ABA transport can mediate distal tissue responses by affecting local ABA concentrations. J Integr Plant Biol, 2018b, 6016-33 CrossRef PubMed Google Scholar

[218] Li X., Ma D., Lu S.X., Hu X., Huang R., Liang T., Xu T., Tobin E.M., Liu H.. Blue light- and low temperature-regulated COR27 and COR28 play roles in the Arabidopsis circadian clock. Plant Cell, 2016, 282755-2769 CrossRef PubMed Google Scholar

[219] Li X.M., Chao D.Y., Wu Y., Huang X., Chen K., Cui L.G., Su L., Ye W.W., Chen H., Chen H.C., et al. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat Genet, 2015, 47827-833 CrossRef PubMed Google Scholar

[220] Li Y., Gu M., Zhang X., Zhang J., Fan H., Li P., Li Z., Xu G.. Engineering a sensitive visual-tracking reporter system for real-time monitoring phosphorus deficiency in tobacco. Plant Biotechnol J, 2014, 12674-684 CrossRef PubMed Google Scholar

[221] Li Z., Li Z., Gao X., Chinnusamy V., Bressan R., Wang Z.X., Zhu J.K., Wu J.W., Liu D.. ROP11 GTPase negatively regulates ABA signaling by protecting ABI1 phosphatase activity from inhibition by the ABA receptor RCAR1/PYL9 in Arabidopsis. J Integr Plant Biol, 2012, 54180-188 CrossRef PubMed Google Scholar

[222] Liang X., Zhou J.M.. Receptor-like cytoplasmic kinases: central players in plant receptor kinase-mediated signaling. Annu Rev Plant Biol, 2018, 69267-299 CrossRef PubMed Google Scholar

[223] Lin H., Yang Y., Quan R., Mendoza I., Wu Y., Du W., Zhao S., Schumaker K.S., Pardo J.M., Guo Y.. Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis. Plant Cell, 2009, 211607-1619 CrossRef PubMed Google Scholar

[224] Lin M., Chai K., Ko S., Kuang L., Lur H.S., Charng Y.. A positive feedback Loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties. Plant Physiol, 2014, 1642045-2053 CrossRef PubMed Google Scholar

[225] Lin Z., Li Y., Zhang Z., Liu X., Hsu C.C., Du Y., Sang T., Zhu C., Wang Y., Satheesh V., et al. A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants. Nat Commun, 2020, 11613 CrossRef PubMed ADS Google Scholar

[226] Lindsay E.R., Maathuis F.J.M.. Arabidopsis thaliana NIP7;1 is involved in tissue arsenic distribution and tolerance in response to arsenate. FEBS Lett, 2016, 590779-786 CrossRef PubMed Google Scholar

[227] Liu C.L., Gao Z.Y., Shang L.G., Yang C.H., Ruan B.P., Zeng D.L., Guo L.B., Zhao F.J., Huang C.F., Qian Q.. Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice. J Integr Plant Biol, 2020, 62314-329 CrossRef PubMed Google Scholar

[228] Liu H., Zhang C., Yang J., Yu N., Wang E.. Hormone modulation of legume-rhizobial symbiosis. J Integr Plant Biol, 2018a, 60632-648 CrossRef PubMed Google Scholar

[229] Liu H., Zhao H., Wu L., Liu A., Zhao F.J., Xu W.. Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol, 2017a, 215687-698 CrossRef PubMed Google Scholar

[230] Liu H.C., Liao H.T., Charng Y.Y.. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ, 2011, 34738-751 CrossRef PubMed Google Scholar

[231] Liu H.T., Gao F., Li G.L., Han J.L., Liu D.L., Sun D.Y., Zhou R.G.. The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J, 2008, 55760-773 CrossRef PubMed Google Scholar

[232] Liu H.T., Li G.L., Chang H., Sun D.Y., Zhou R.G., Li B.. Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant Cell Environ, 2007, 30156-164 CrossRef PubMed Google Scholar

[233] Liu H.T., Sun D.Y., Zhou R.G.. Ca2+ and AtCaM3 are involved in the expression of heat shock protein gene in Arabidopsis. Plant Cell Environ, 2010, 281276-1284 CrossRef Google Scholar

[234] Liu J., Ishitani M., Halfter U., Kim C.S., Zhu J.K.. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA, 2000, 973730-3734 CrossRef ADS Google Scholar

[235] Liu J., Zhu J.K.. A calcium sensor homolog required for plant salt tolerance. Science, 1998, 2801943-1945 CrossRef PubMed ADS Google Scholar

[236] Liu J., Zhang C., Wei C., Liu X., Wang M., Yu F., Xie Q., Tu J.. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant Physiol, 2016, 170429-443 CrossRef PubMed Google Scholar

[237] Liu J., Shi Y., Yang S.. Insights into the regulation of C-repeat binding factors in plant cold signaling. J Integr Plant Biol, 2018b, 60780-795 CrossRef PubMed Google Scholar

[238] Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K., Shinozaki K.. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 101391-1406 CrossRef PubMed Google Scholar

[239] Liu X., Wang J., Sun L.. Structure of the hyperosmolality-gated calcium-permeable channel OSCA1.2. Nat Commun, 2018c, 95060 CrossRef PubMed ADS Google Scholar

[240] Liu Y., Bassham D.C.. Autophagy: Pathways for self-eating in plant cells. Annu Rev Plant Biol, 2012, 63215-237 CrossRef PubMed Google Scholar

[241] Liu Z., Jia Y., Ding Y., Shi Y., Li Z., Guo Y., Gong Z., Yang S.. Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response. Mol Cell, 2017b, 66117-128.e5 CrossRef PubMed Google Scholar

[242] Liu Z., Yan J.P., Li D.K., Luo Q., Yan Q., Liu Z.B., Ye L.M., Wang J.M., Li X.F., Yang Y.. UDP-glucosyltransferase71c5, a major glucosyltransferase, mediates abscisic acid homeostasis in Arabidopsis. Plant Physiol, 2015, 1671659-1670 CrossRef PubMed Google Scholar

[243] Luo J.S., Huang J., Zeng D.L., Peng J.S., Zhang G.B., Ma H.L., Guan Y., Yi H.Y., Fu Y.L., Han B., et al. A defensin-like protein drives cadmium efflux and allocation in rice. Nat Commun, 2018, 9645 CrossRef PubMed ADS Google Scholar

[244] Lv Q., Zhong Y., Wang Y., Wang Z., Zhang L., Shi J., Wu Z., Liu Y., Mao C., Yi K., et al. SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice. Plant Cell, 2014, 261586-1597 CrossRef PubMed Google Scholar

[245] Ma J.F., Yamaji N., Mitani N., Xu X.Y., Su Y.H., McGrath S.P., Zhao F.J.. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA, 2008, 1059931-9935 CrossRef PubMed ADS Google Scholar

[246] Ma L., Ye J., Yang Y., Lin H., Yue L., Luo J., Long Y., Fu H., Liu X., Zhang Y., et al. The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress. Dev Cell, 2019, 48697-709.e5 CrossRef PubMed Google Scholar

[247] Ma Y., Dai X., Xu Y., Luo W., Zheng X., Zeng D., Pan Y., Lin X., Liu H., Zhang D., et al. COLD1 confers chilling tolerance in rice. Cell, 2015, 1601209-1221 CrossRef PubMed Google Scholar

[248] Ma Y., Szostkiewicz I., Korte A., Moes D., Yang Y., Christmann A., Grill E.. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 2009, 3241064-1068 CrossRef PubMed ADS Google Scholar

[249] Maeda Y., Konishi M., Kiba T., Sakuraba Y., Sawaki N., Kurai T., Ueda Y., Sakakibara H., Yanagisawa S.. A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis. Nat Commun, 2018, 91376 CrossRef PubMed ADS Google Scholar

[250] Maierhofer T., Diekmann M., Offenborn J.N., Lind C., Bauer H., Hashimoto K., S. Al-Rasheid K.A., Luan S., Kudla J., Geiger D., et al. Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid. Sci Signal, 2014, 7ra86 CrossRef Google Scholar

[251] Maity K., Heumann J.M., McGrath A.P., Kopcho N.J., Hsu P.K., Lee C.W., Mapes J.H., Garza D., Krishnan S., Morgan G.P., et al. Cryo-EM structure of OSCA1.2 from Oryza sativa elucidates the mechanical basis of potential membrane hyperosmolality gating. Proc Natl Acad Sci USA, 2019, 11614309-14318 CrossRef PubMed Google Scholar

[252] Mao H., Wang H., Liu S., Li Z., Yang X., Yan J., Li J., Tran L.S.P., Qin F.. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun, 2015, 68326 CrossRef PubMed ADS Google Scholar

[253] Marchive C., Roudier F., Castaings L., Bréhaut V., Blondet E., Colot V., Meyer C., Krapp A.. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat Commun, 2013, 41713 CrossRef PubMed ADS Google Scholar

[254] Martinière A., Lavagi I., Nageswaran G., Rolfe D.J., Maneta-Peyret L., Luu D.T., Botchway S.W., Webb S.E.D., Mongrand S., Maurel C., et al. Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc Natl Acad Sci USA, 2012, 10912805-12810 CrossRef PubMed ADS Google Scholar

[255] Maruyama K., Todaka D., Mizoi J., Yoshida T., Kidokoro S., Matsukura S., Takasaki H., Sakurai T., Yamamoto Y.Y., Yoshiwara K., et al. Identification of cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res, 2012, 1937-49 CrossRef PubMed Google Scholar

[256] Maruyama K., Urano K., Yoshiwara K., Morishita Y., Sakurai N., Suzuki H., Kojima M., Sakakibara H., Shibata D., Saito K., et al. Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol, 2014, 1641759-1771 CrossRef PubMed Google Scholar

[257] Mäser P., Eckelman B., Vaidyanathan R., Horie T., Fairbairn D.J., Kubo M., Yamagami M., Yamaguchi K., Nishimura M., Uozumi N., et al. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett, 2002, 531157-161 CrossRef Google Scholar

[258] McAinsh M.R., Pittman J.K.. Shaping the calcium signature. New Phytol, 2009, 181275-294 CrossRef PubMed Google Scholar

[259] McClung C.R., Davis S.J.. Ambient thermometers in plants: from physiological outputs towards mechanisms of thermal sensing. Curr Biol, 2010, 20R1086-R1092 CrossRef PubMed Google Scholar

[260] Melcher K., Ng L.M., Zhou X.E., Soon F.F., Xu Y., Suino-Powell K.M., Park S.Y., Weiner J.J., Fujii H., Chinnusamy V., et al. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature, 2009, 462602-608 CrossRef PubMed ADS Google Scholar

[261] Meyer K., Leube M.P., Grill E.. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science, 1994, 2641452-1455 CrossRef PubMed ADS Google Scholar

[262] Meyer S., Mumm P., Imes D., Endler A., Weder B., Al-Rasheid K.A.S., Geiger D., Marten I., Martinoia E., Hedrich R.. AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J, 2010, 631054-1062 CrossRef PubMed Google Scholar

[263] Miller M.J., Barrett-Wilt G.A., Hua Z., Vierstra R.D.. Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis. Proc Natl Acad Sci USA, 2010, 10716512-16517 CrossRef PubMed ADS Google Scholar

[264] Mishra S.K., Tripp J., Winkelhaus S., Tschiersch B., Theres K., Nover L., Scharf K.D.. In the complex family of heat stress transcription factors, HSfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev, 2002, 161555-1567 CrossRef PubMed Google Scholar

[265] Miura K., Jin J.B., Lee J., Yoo C.Y., Stirm V., Miura T., Ashworth E.N., Bressan R.A., Yun D.J., Hasegawa P.M.. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell, 2007, 191403-1414 CrossRef PubMed Google Scholar

[266] Miura K., Ohta M., Nakazawa M., Ono M., Hasegawa P.M.. ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance. Plant J, 2011, 67269-279 CrossRef PubMed Google Scholar

[267] Miyazono K.I., Miyakawa T., Sawano Y., Kubota K., Kang H.J., Asano A., Miyauchi Y., Takahashi M., Zhi Y., Fujita Y., et al. Structural basis of abscisic acid signalling. Nature, 2009, 462609-614 CrossRef PubMed ADS Google Scholar

[268] Møller I.S., Gilliham M., Jha D., Mayo G.M., Roy S.J., Coates J.C., Haseloff J., Tester M.. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell, 2009, 212163-2178 CrossRef PubMed Google Scholar

[269] Mora-Macías J., Ojeda-Rivera J.O., Gutiérrez-Alanís D., Yong-Villalobos L., Oropeza-Aburto A., Raya-González J., Jiménez-Domínguez G., Chávez-Calvillo G., Rellán-Álvarez R., Herrera-Estrella L.. Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate. Proc Natl Acad Sci USA, 2017, 114E3563-E3572 CrossRef PubMed Google Scholar

[270] Mori I.C., Murata Y., Yang Y., Munemasa S., Wang Y.F., Andreoli S., Tiriac H., Alonso J.M., Harper J.F., Ecker J.R., et al. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLoS Biol, 2006, 4e327 CrossRef PubMed Google Scholar

[271] Morimoto K., Mizoi J., Qin F., Kim J.S., Sato H., Osakabe Y., Shinozaki K., Yamaguchi-Shinozaki K.. Stabilization of Arabidopsis DREB2A is required but not sufficient for the induction of target genes under conditions of stress. PLoS ONE, 2013, 8e80457 CrossRef PubMed ADS Google Scholar

[272] Morton M.J.L., Awlia M., Al-Tamimi N., Saade S., Pailles Y., Negrão S., Tester M.. Salt stress under the scalpel – Dissecting the genetics of salt tolerance. Plant J, 2019, 97148-163 CrossRef PubMed Google Scholar

[273] Müller D.B., Vogel C., Bai Y., Vorholt J.A.. The plant microbiota: systems-level insights and perspectives. Annu Rev Genet, 2016, 50211-234 CrossRef PubMed Google Scholar

[274] Munns R., James R.A., Xu B., Athman A., Conn S.J., Jordans C., Byrt C.S., Hare R.A., Tyerman S.D., Tester M., et al. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol, 2012, 30360-364 CrossRef PubMed Google Scholar

[275] Murata Y., Pei Z.M., Mori I.C., Schroeder J.. Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell, 2001, 132513-2523 CrossRef PubMed Google Scholar

[276] Murthy S.E., Dubin A.E., Whitwam T., Jojoa-Cruz S., Cahalan S.M., Mousavi S.A.R., Ward A.B., Patapoutian A.. OSCA/TMEM63 are an Evolutionarily Conserved Family of Mechanically Activated Ion Channels. eLife, 2018, 7e41844 CrossRef PubMed Google Scholar

[277] Mustilli A.C., Merlot S., Vavasseur A., Fenzi F., Giraudat J.. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell, 2002, 143089-3099 CrossRef PubMed Google Scholar

[278] Nakashima K., Fujita Y., Kanamori N., Katagiri T., Umezawa T., Kidokoro S., Maruyama K., Yoshida T., Ishiyama K., Kobayashi M., et al. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol, 2009, 501345-1363 CrossRef PubMed Google Scholar

[279] Nakashima K., Tran L.S.P., Van Nguyen D., Fujita M., Maruyama K., Todaka D., Ito Y., Hayashi N., Shinozaki K., Yamaguchi-Shinozaki K.. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J, 2007, 51617-630 CrossRef PubMed Google Scholar

[280] Negi J., Matsuda O., Nagasawa T., Oba Y., Takahashi H., Kawai-Yamada M., Uchimiya H., Hashimoto M., Iba K.. CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature, 2008, 452483-486 CrossRef PubMed ADS Google Scholar

[281] Nelson D.E., Repetti P.P., Adams T.R., Creelman R.A., Wu J., Warner D.C., Anstrom D.C., Bensen R.J., Castiglioni P.P., Donnarummo M.G., et al. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA, 2007, 10416450-16455 CrossRef PubMed ADS Google Scholar

[282] Nishimura N., Hitomi K., Arvai A.S., Rambo R.P., Hitomi C., Cutler S.R., Schroeder J.I., Getzoff E.D.. Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science, 2009, 3261373-1379 CrossRef PubMed ADS Google Scholar

[283] Nishizawa-Yokoi A., Nosaka R., Hayashi H., Tainaka H., Maruta T., Tamoi M., Ikeda M., Ohme-Takagi M., Yoshimura K., Yabuta Y., et al. HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Plant Cell Physiol, 2011, 52933-945 CrossRef PubMed Google Scholar

[284] Niyogi K.K., Grossman A.R., Björkman O.. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell, 1998, 101121-1134 CrossRef PubMed Google Scholar

[285] Nocito F.F., Lancilli C., Dendena B., Lucchini G., Sacchi G.A.. Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. Plant Cell Environ, 2011, 34994-1008 CrossRef PubMed Google Scholar

[286] Norén L., Kindgren P., Stachula P., Rühl M., Eriksson M.E., Hurry V., Strand Å.. HSP90, ZTL, PRR5 and HY5 integrate circadian and plastid signaling pathways to regulate CBF and COR expression. Plant Physiol, 2016, 1711392-1406 CrossRef PubMed Google Scholar

[287] Ohama N., Sato H., Shinozaki K., Yamaguchi-Shinozaki K.. Transcriptional regulatory network of plant heat stress response. Trends Plant Sci, 2017, 2253-65 CrossRef PubMed Google Scholar

[288] Ohta M., Guo Y., Halfter U., Zhu J.K.. A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci USA, 2003, 10011771-11776 CrossRef PubMed ADS Google Scholar

[289] Okamoto M., Tanaka Y., Abrams S.R., Kamiya Y., Seki M., Nambara E.. High humidity induces abscisic acid 8′-hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in Arabidopsis. Plant Physiol, 2009, 149825-834 CrossRef PubMed Google Scholar

[290] Park J., Lim C.J., Shen M., Park H.J., Cha J.Y., Iniesto E., Rubio V., Mengiste T., Zhu J.K., Bressan R.A., et al. Epigenetic switch from repressive to permissive chromatin in response to cold stress. Proc Natl Acad Sci USA, 2018, 115E5400-E5409 CrossRef PubMed Google Scholar

[291] Park S., Lee C.M., Doherty C.J., Gilmour S.J., Kim Y.S., Thomashow M.F.. Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J, 2015, 82193-207 CrossRef PubMed Google Scholar

[292] Park S.Y., Fung P., Nishimura N., Jensen D.R., Fujii H., Zhao Y., Lumba S., Santiago J., Rodrigues A., Chow T.F.F., et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 2009, 3241068-1071 CrossRef PubMed ADS Google Scholar

[293] Park Y., Xu Z.Y., Kim S.Y., Lee J., Choi B., Lee J., Kim H., Sim H.J., Hwang I.. Spatial regulation of ABCG25, an ABA exporter, is an important component of the mechanism controlling cellular ABA levels. Plant Cell, 2016, 282528-2544 CrossRef PubMed Google Scholar

[294] Pei Z.M., Murata Y., Benning G., Thomine S., Klüsener B., Allen G.J., Grill E., Schroeder J.I.. Calcium channels activated by hydrogen peroxide mediate abscisic acidsignalling in guard cells. Nature, 2000, 406731-734 CrossRef PubMed Google Scholar

[295] Peng S., Huang J., Sheehy J.E., Laza R.C., Visperas R.M., Zhong X., Centeno G.S., Khush G.S., Cassman K.G.. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA, 2004, 1019971-9975 CrossRef PubMed ADS Google Scholar

[296] Petersen E.N., Chung H.W., Nayebosadri A., Hansen S.B.. Kinetic disruption of lipid rafts is a mechanosensor for phospholipase D. Nat Commun, 2016, 713873 CrossRef PubMed ADS Google Scholar

[297] Priest D.M., Ambrose S.J., Vaistij F.E., Elias L., Higgins G.S., Ross A.R.S., Abrams S.R., Bowles D.J.. Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana. Plant J, 2006, 46492-502 CrossRef PubMed Google Scholar

[298] Puga M.I., Mateos I., Charukesi R., Wang Z., Franco-Zorrilla J.M., de Lorenzo L., Irigoyen M.L., Masiero S., Bustos R., Rodríguez J., et al. SPX1 is a phosphate-dependent inhibitor of Phosphate Starvation Response 1 in Arabidopsis. Proc Natl Acad Sci USA, 2014, 11114947-14952 CrossRef PubMed ADS Google Scholar

[299] Qi J., Song C.P., Wang B., Zhou J., Kangasjärvi J., Zhu J.K., Gong Z.. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J Integr Plant Biol, 2018, 60805-826 CrossRef PubMed Google Scholar

[300] Qiao B., Zhang Q., Liu D., Wang H., Yin J., Wang R., He M., Cui M., Shang Z., Wang D., et al. A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2. J Exp Bot, 2015, 665853-5866 CrossRef PubMed Google Scholar

[301] Qin F., Kakimoto M., Sakuma Y., Maruyama K., Osakabe Y., Tran L.S.P., Shinozaki K., Yamaguchi-Shinozaki K.. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J, 2007, 5054-69 CrossRef PubMed Google Scholar

[302] Qin F., Sakuma Y., Tran L.S.P., Maruyama K., Kidokoro S., Fujita Y., Fujita M., Umezawa T., Sawano Y., Miyazono K.I., et al. Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell, 2008, 201693-1707 CrossRef PubMed Google Scholar

[303] Qin T., Tian Q., Wang G., Xiong L.. LOWER TEMPERATURE 1 enhances ABA responses and plant drought tolerance by modulating the stability and localization of C2-domain ABA-related proteins in Arabidopsis. Mol Plant, 2019, 121243-1258 CrossRef PubMed Google Scholar

[304] Quan R., Lin H., Mendoza I., Zhang Y., Cao W., Yang Y., Shang M., Chen S., Pardo J.M., Guo Y.. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell, 2007, 191415-1431 CrossRef PubMed Google Scholar

[305] Quintero F.J., Martinez-Atienza J., Villalta I., Jiang X., Kim W.Y., Ali Z., Fujii H., Mendoza I., Yun D.J., Zhu J.K., et al. Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci USA, 2011, 1082611-2616 CrossRef PubMed ADS Google Scholar

[306] Quintero F.J., Ohta M., Shi H., Zhu J.K., Pardo J.M.. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci USA, 2002, 999061-9066 CrossRef PubMed ADS Google Scholar

[307] Raghavendra A.S., Gonugunta V.K., Christmann A., Grill E.. ABA perception and signalling. Trends Plant Sci, 2010, 15395-401 CrossRef PubMed Google Scholar

[308] Reguera M., Bassil E., Tajima H., Wimmer M., Chanoca A., Otegui M.S., Paris N., Blumwald E.. pH regulation by NHX-Type antiporters is required for receptor-mediated protein trafficking to the vacuole in Arabidopsis. Plant Cell, 2015, 271200-1217 CrossRef PubMed Google Scholar

[309] Reindl A., Schöffl F., Schell J., Koncz C., Bakó L.. Phosphorylation by a cyclin-dependent kinase modulates DNA binding of the Arabidopsis heat-shock transcription factor HSF1 in vitro. Plant Physiol, 1997, 11593-100 CrossRef PubMed Google Scholar

[310] Ren S.C., Song X.F., Chen W.Q., Lu R., Lucas W.J., Liu C.M.. CLE25 peptide regulates phloem initiation in Arabidopsis through a CLERK-CLV2 receptor complex. J Integr Plant Biol, 2019, 611043-1061 CrossRef PubMed Google Scholar

[311] Ren X., Chen Z., Liu Y., Zhang H., Zhang M., Liu Q., Hong X., Zhu J.K., Gong Z.. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J, 2010, 63417-429 CrossRef PubMed Google Scholar

[312] Ren Z.H., Gao J.P., Li L.G., Cai X.L., Huang W., Chao D.Y., Zhu M.Z., Wang Z.Y., Luan S., Lin H.X.. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet, 2005, 371141-1146 CrossRef PubMed Google Scholar

[313] Rizhsky L., Davletova S., Liang H., Mittler R.. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem, 2004, 27911736-11743 CrossRef PubMed Google Scholar

[314] Rodriguez L., Gonzalez-Guzman M., Diaz M., Rodrigues A., Izquierdo-Garcia A.C., Peirats-Llobet M., Fernandez M.A., Antoni R., Fernandez D., Marquez J.A., et al. C2-domain abscisic acid-related proteins mediate the interaction of PYR/PYL/RCAR abscisic acid receptors with the plasma membrane and regulate abscisic acid sensitivity in Arabidopsis. Plant Cell, 2014, 264802-4820 CrossRef PubMed Google Scholar

[315] Rodriguez P.L., Benning G., Grill E.. ABI2, a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis. FEBS Lett, 1998, 421185-190 CrossRef Google Scholar

[316] Rubio F., Gassmann W., Schroeder J.I.. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science, 1995, 2701660-1663 CrossRef PubMed ADS Google Scholar

[317] Rubio V., Linhares F., Solano R., Martín A.C., Iglesias J., Leyva A., Paz-Ares J.. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev, 2001, 152122-2133 CrossRef PubMed Google Scholar

[318] Ruelland, E., Vaultier, M.N., Zachowski, A., and Hurry, V. (2009). Cold signalling and cold acclimation in plants. Adv Bot Res 49, 35–150. Google Scholar

[319] Ruggiero B., Koiwa H., Manabe Y., Quist T.M., Inan G., Saccardo F., Joly R.J., Hasegawa P.M., Bressan R.A., Maggio A.. Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis. Plant Physiol, 2004, 1363134-3147 CrossRef PubMed Google Scholar

[320] Rus A., Baxter I., Muthukumar B., Gustin J., Lahner B., Yakubova E., Salt D.E.. Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis. PLoS Genet, 2006, 2e210 CrossRef PubMed Google Scholar

[321] Rus A., Lee B., Muñoz-Mayor A., Sharkhuu A., Miura K., Zhu J.K., Bressan R.A., Hasegawa P.M.. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol, 2004, 1362500-2511 CrossRef PubMed Google Scholar

[322] Rus A., Yokoi S., Sharkhuu A., Reddy M., Lee B.H., Matsumoto T.K., Koiwa H., Zhu J.K., Bressan R.A., Hasegawa P.M.. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci USA, 2001, 9814150-14155 CrossRef PubMed ADS Google Scholar

[323] Ruschhaupt M., Mergner J., Mucha S., Papacek M., Doch I., Tischer S.V., Hemmler D., Chiasson D., Edel K.H., Kudla J., et al. Rebuilding core abscisic acid signaling pathways of Arabidopsis in yeast. EMBO J, 2019, 38e101859 CrossRef PubMed Google Scholar

[324] Rytz T.C., Miller M.J., McLoughlin F., Augustine R.C., Marshall R.S., Juan Y.T., Charng Y.Y., Scalf M., Smith L.M., Vierstra R.D.. SUMOylome profiling reveals a diverse array of nuclear targets modified by the SUMO ligase SIZ1 during heat stress. Plant Cell, 2018, 301077-1099 CrossRef PubMed Google Scholar

[325] Saito S., Hamamoto S., Moriya K., Matsuura A., Sato Y., Muto J., Noguchi H., Yamauchi S., Tozawa Y., Ueda M., et al. N-myristoylation and S-acylation are common modifications of Ca2+-regulated Arabidopsis kinases and are required for activation of the SLAC1 anion channel. New Phytol, 2018, 2181504-1521 CrossRef PubMed Google Scholar

[326] Sakuma Y., Maruyama K., Osakabe Y., Qin F., Seki M., Shinozaki K., Yamaguchi-Shinozaki K.. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell, 2006a, 181292-1309 CrossRef PubMed Google Scholar

[327] Sakuma Y., Maruyama K., Qin F., Osakabe Y., Shinozaki K., Yamaguchi-Shinozaki K.. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA, 2006b, 10318822-18827 CrossRef PubMed ADS Google Scholar

[328] Sánchez-Bermejo E., Castrillo G., del Llano B., Navarro C., Zarco-Fernández S., Martinez-Herrera D.J., Leo-del Puerto Y., Muñoz R., Cámara C., Paz-Ares J., et al. Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana. Nat Commun, 2014, 54617 CrossRef PubMed ADS Google Scholar

[329] Santiago J., Dupeux F., Round A., Antoni R., Park S.Y., Jamin M., Cutler S.R., Rodriguez P.L., Márquez J.A.. The abscisic acid receptor PYR1 in complex with abscisic acid. Nature, 2009, 462665-668 CrossRef PubMed ADS Google Scholar

[330] Saruhashi M., Kumar Ghosh T., Arai K., Ishizaki Y., Hagiwara K., Komatsu K., Shiwa Y., Izumikawa K., Yoshikawa H., Umezawa T., et al. Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2. Proc Natl Acad Sci USA, 2015, 112E6388-E6396 CrossRef PubMed ADS Google Scholar

[331] Sasaki A., Yamaji N., Ma J.F.. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J Exp Bot, 2014, 656013-6021 CrossRef PubMed Google Scholar

[332] Sasaki A., Yamaji N., Yokosho K., Ma J.F.. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell, 2012, 242155-2167 CrossRef PubMed Google Scholar

[333] Sasaki T., Mori I.C., Furuichi T., Munemasa S., Toyooka K., Matsuoka K., Murata Y., Yamamoto Y.. Closing plant stomata requires a homolog of an aluminum-activated malate transporter. Plant Cell Physiol, 2010, 51354-365 CrossRef PubMed Google Scholar

[334] Sato A., Sato Y., Fukao Y., Fujiwara M., Umezawa T., Shinozaki K., Hibi T., Taniguchi M., Miyake H., Goto D.B., et al. Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J, 2009, 424439-448 CrossRef PubMed Google Scholar

[335] Sato H., Mizoi J., Tanaka H., Maruyama K., Qin F., Osakabe Y., Morimoto K., Ohori T., Kusakabe K., Nagata M., et al. Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. Plant Cell, 2014, 264954-4973 CrossRef PubMed Google Scholar

[336] Sato H., Suzuki T., Takahashi F., Shinozaki K., Yamaguchi-Shinozaki K.. NF-YB2 and NF-YB3 have functionally diverged and differentially induce drought and heat stress-specific genes. Plant Physiol, 2019, 1801677-1690 CrossRef PubMed Google Scholar

[337] Satoh-Nagasawa N., Mori M., Nakazawa N., Kawamoto T., Nagato Y., Sakurai K., Takahashi H., Watanabe A., Akagi H.. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol, 2012, 53213-224 CrossRef PubMed Google Scholar

[338] Schachtman D.P., Schroeder J.I.. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature, 1994, 370655-658 CrossRef PubMed ADS Google Scholar

[339] Scherzer S., Maierhofer T., Al-Rasheid K.A.S., Geiger D., Hedrich R.. Multiple calcium-dependent kinases modulate ABA-activated guard cell anion channels. Mol Plant, 2012, 51409-1412 CrossRef PubMed Google Scholar

[340] Schroeder J.I., Hagiwara S.. Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels. Proc Natl Acad Sci USA, 1990, 879305-9309 CrossRef PubMed ADS Google Scholar

[341] Schwartz S.H., Tan B.C., Gage D.A., Zeevaart J.A., McCarty D.R.. Specific oxidative cleavage of carotenoids by VP14 of maize. Science, 1997, 2761872-1874 CrossRef PubMed Google Scholar

[342] Sedaghatmehr M., Thirumalaikumar V.P., Kamranfar I., Marmagne A., Masclaux-Daubresse C., Balazadeh S.. A regulatory role of autophagy for resetting the memory of heat stress in plants. Plant Cell Environ, 2019, 421054-1064 CrossRef PubMed Google Scholar

[343] Seo M., Peeters A.J.M., Koiwai H., Oritani T., Marion-Poll A., Zeevaart J.A.D., Koornneef M., Kamiya Y., Koshiba T.. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci USA, 2000, 9712908-12913 CrossRef PubMed ADS Google Scholar

[344] Seo P.J., Park M.J., Lim M.H., Kim S.G., Lee M., Baldwin I.T., Park C.M.. A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis. Plant Cell, 2012, 242427-2442 CrossRef PubMed Google Scholar

[345] Shabala S., Wu H., Bose J.. Salt stress sensing and early signalling events in plant roots: Current knowledge and hypothesis. Plant Sci, 2015, 241109-119 CrossRef PubMed Google Scholar

[346] Shang Y., Yan L., Liu Z.Q., Cao Z., Mei C., Xin Q., Wu F.Q., Wang X.F., Du S.Y., Jiang T., et al. The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell, 2010, 221909-1935 CrossRef PubMed Google Scholar

[347] Shen H., Zhong X., Zhao F., Wang Y., Yan B., Li Q., Chen G., Mao B., Wang J., Li Y., et al. Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nat Biotechnol, 2015, 33996-1003 CrossRef PubMed Google Scholar

[348] Shi H., Ishitani M., Kim C., Zhu J.K.. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA, 2000, 976896-6901 CrossRef PubMed ADS Google Scholar

[349] Shi H., Lee B., Wu S.J., Zhu J.K.. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol, 2003, 2181-85 CrossRef PubMed Google Scholar

[350] Shi H., Quintero F.J., Pardo J.M., Zhu J.K.. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell, 2002, 14465-477 CrossRef PubMed Google Scholar

[351] Shi S., Wang T., Chen Z., Tang Z., Wu Z., Salt D.E., Chao D.Y., Zhao F.J.. OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiol, 2016, 1721708-1719 CrossRef PubMed Google Scholar

[352] Shi Y., Tian S., Hou L., Huang X., Zhang X., Guo H., Yang S.. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell, 2012, 242578-2595 CrossRef PubMed Google Scholar

[353] Shi Y., Ding Y., Yang S.. Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant Cell Physiol, 2015, 567-15 CrossRef PubMed Google Scholar

[354] Shkolnik D., Nuriel R., Bonza M.C., Costa A., Fromm H.. MIZ1 regulates ECA1 to generate a slow, long-distance phloem-transmitted Ca2+ signal essential for root water tracking in Arabidopsis. Proc Natl Acad Sci USA, 2018, 1158031-8036 CrossRef PubMed Google Scholar

[355] Siddiqui K.S., Cavicchioli R.. Cold-adapted enzymes. Annu Rev Biochem, 2006, 75403-433 CrossRef Google Scholar

[356] Sierla M., Hõrak H., Overmyer K., Waszczak C., Yarmolinsky D., Maierhofer T., Vainonen J.P., Salojärvi J., Denessiouk K., Laanemets K., et al. The receptor-like pseudokinase GHR1 is required for stomatal closure. Plant Cell, 2018, 302813-2837 CrossRef PubMed Google Scholar

[357] Sirichandra C., Gu D., Hu H.C., Davanture M., Lee S., Djaoui M., Valot B., Zivy M., Leung J., Merlot S., et al. Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett, 2009, 5832982-2986 CrossRef PubMed Google Scholar

[358] Song W.Y., Park J., Mendoza-Cózatl D.G., Suter-Grotemeyer M., Shim D., Hörtensteiner S., Geisler M., Weder B., Rea P.A., Rentsch D., et al. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci USA, 2010, 10721187-21192 CrossRef PubMed ADS Google Scholar

[359] Song W.Y., Yamaki T., Yamaji N., Ko D., Jung K.H., Fujii-Kashino M., An G., Martinoia E., Lee Y., Ma J.F.. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci USA, 2014, 11115699-15704 CrossRef PubMed ADS Google Scholar

[360] Stockinger E.J., Gilmour S.J., Thomashow M.F.. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 1997, 941035-1040 CrossRef PubMed ADS Google Scholar

[361] Su H., Cao Y., Ku L., Yao W., Cao Y., Ren Z., Dou D., Wang H., Ren Z., Liu H., et al. Dual functions of ZmNF-YA3 in photoperiod-dependent flowering and abiotic stress responses in maize. J Exp Bot, 2018, 695177-5189 CrossRef PubMed Google Scholar

[362] Sun L., Lu S.J., Zhang S.S., Zhou S.F., Sun L., Liu J.X.. The lumen-facing domain is important for the biological function and organelle-to-organelle movement of bZIP28 during ER stress in Arabidopsis. Mol Plant, 2013, 61605-1615 CrossRef PubMed Google Scholar

[363] Sussmilch F.C., Brodribb T.J., McAdam S.A.M.. What are the evolutionary origins of stomatal responses to abscisic acid in land plants?. J Integr Plant Biol, 2017, 59240-260 CrossRef PubMed Google Scholar

[364] Suzuki N., Sejima H., Tam R., Schlauch K., Mittler R.. Identification of the MBF1 heat-response regulon of Arabidopsis thaliana. Plant J, 2011, 66844-851 CrossRef PubMed Google Scholar

[365] Świeżawska B., Duszyn M., Jaworski K., Szmidt-Jaworska A.. Downstream targets of cyclic nucleotides in plants. Front Plant Sci, 2018, 91428 CrossRef PubMed Google Scholar

[366] Takahashi F., Suzuki T., Osakabe Y., Betsuyaku S., Kondo Y., Dohmae N., Fukuda H., Yamaguchi-Shinozaki K., Shinozaki K.. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature, 2018, 556235-238 CrossRef PubMed ADS Google Scholar

[367] Takahashi Y., Zhang J., Hsu P.K., Ceciliato P.H.O., Zhang L., Dubeaux G., Munemasa S., Ge C., Zhao Y., Hauser F., et al. MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response. Nat Commun, 2020, 1112 CrossRef PubMed ADS Google Scholar

[368] Takasaki H., Maruyama K., Kidokoro S., Ito Y., Fujita Y., Shinozaki K., Yamaguchi-Shinozaki K., Nakashima K.. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics, 2010, 284173-183 CrossRef PubMed Google Scholar

[369] Takehisa H., Sato Y.. Transcriptome monitoring visualizes growth stage-dependent nutrient status dynamics in rice under field conditions. Plant J, 2019, 971048-1060 CrossRef PubMed Google Scholar

[370] Tan B.C., Schwartz S.H., Zeevaart J.A.D., McCarty D.R.. Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA, 1997, 9412235-12240 CrossRef PubMed Google Scholar

[371] Tang L., Mao B., Li Y., Lv Q., Zhang L.P., Chen C., He H., Wang W., Zeng X., Shao Y., et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep, 2017, 714438 CrossRef PubMed ADS Google Scholar

[372] Tao Q., Jupa R., Liu Y., Luo J., Li J., Kováč J., Li B., Li Q., Wu K., Liang Y., et al. Abscisic acid-mediated modifications of radial apoplastic transport pathway play a key role in cadmium uptake in hyperaccumulator Sedum alfredii. Plant Cell Environ, 2019, 421425-1440 CrossRef PubMed Google Scholar

[373] Taub D.R., Wang X.. Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. J Integr Plant Biol, 2008, 501365-1374 CrossRef PubMed Google Scholar

[374] Thomsen A.R.B., Plouffe B., Cahill Iii T.J., Shukla A.K., Tarrasch J.T., Dosey A.M., Kahsai A.W., Strachan R.T., Pani B., Mahoney J.P., et al. GPCR-G protein-β-arrestin super-complex mediates sustained G protein signaling. Cell, 2016, 166907-919 CrossRef PubMed Google Scholar

[375] To T.K., Nakaminami K., Kim J.M., Morosawa T., Ishida J., Tanaka M., Yokoyama S., Shinozaki K., Seki M.. Arabidopsis HDA6 is required for freezing tolerance. Biochem Biophys Res Commun, 2011, 406414-419 CrossRef PubMed Google Scholar

[376] Tran L.S.P., Nakashima K., Sakuma Y., Simpson S.D., Fujita Y., Maruyama K., Fujita M., Seki M., Shinozaki K., Yamaguchi-Shinozaki K.. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell, 2004, 162481-2498 CrossRef PubMed Google Scholar

[377] Vahisalu T., Kollist H., Wang Y.F., Nishimura N., Chan W.Y., Valerio G., Lamminmäki A., Brosché M., Moldau H., Desikan R., et al. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature, 2008, 452487-491 CrossRef PubMed ADS Google Scholar

[378] Valdés A.E., Overnäs E., Johansson H., Rada-Iglesias A., Engström P.. The homeodomain-leucine zipper (HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities. Plant Mol Biol, 2012, 80405-418 CrossRef PubMed Google Scholar

[379] Vanderauwera S., Suzuki N., Miller G., van de Cotte B., Morsa S., Ravanat J.L., Hegie A., Triantaphylidès C., Shulaev V., Van Montagu M.C.E., et al. Extranuclear protection of chromosomal DNA from oxidative stress. Proc Natl Acad Sci USA, 2011, 1081711-1716 CrossRef PubMed ADS Google Scholar

[380] Venkatachalam K., Montell C.. TRP channels. Annu Rev Biochem, 2007, 76387-417 CrossRef Google Scholar

[381] Verret F., Wheeler G., Taylor A.R., Farnham G., Brownlee C.. Calcium channels in photosynthetic eukaryotes: implications for evolution of calcium-based signalling. New Phytol, 2010, 18723-43 CrossRef PubMed Google Scholar

[382] Vlachonasios K.E., Thomashow M.F., Triezenberg S.J.. Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell, 2003, 15626-638 CrossRef PubMed Google Scholar

[383] Volkov R.A., Panchuk I.I., Mullineaux P.M., Schöffl F.. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol, 2006, 61733-746 CrossRef PubMed Google Scholar

[384] von Koskull-Döring P., Scharf K.D., Nover L.. The diversity of plant heat stress transcription factors. Trends Plant Sci, 2007, 12452-457 CrossRef PubMed Google Scholar

[385] Wahid A., Gelani S., Ashraf M., Foolad M.. Heat tolerance in plants: An overview. Environ Exp Bot, 2007, 61199-223 CrossRef Google Scholar

[386] Wang C., Na G.N., Bermejo E.S., Chen Y., Banks J.A., Salt D.E., Zhao F.J.. Dissecting the components controlling root-to-shoot arsenic translocation in Arabidopsis thaliana. New Phytol, 2018a, 217206-218 CrossRef PubMed Google Scholar

[387] Wang H., Tang J., Liu J., Hu J., Liu J., Chen Y., Cai Z., Wang X.. Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2. Mol Plant, 2018b, 11315-325 CrossRef PubMed Google Scholar

[388] Wang K., He J., Zhao Y., Wu T., Zhou X., Ding Y., Kong L., Wang X., Wang Y., Li J., et al. EAR1 negatively regulates ABA signaling by enhancing 2C protein phosphatase activity. Plant Cell, 2018c, 30815-834 CrossRef PubMed Google Scholar

[389] Wang L., Hua D., He J., Duan Y., Chen Z., Hong X., Gong Z.. Auxin Response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet, 2011, 7e1002172 CrossRef PubMed Google Scholar

[390] Wang P., Cui X., Zhao C., Shi L., Zhang G., Sun F., Cao X., Yuan L., Xie Q., Xu X.. COR27 and COR28 encode nighttime repressors integrating Arabidopsis circadian clock and cold response. J Integr Plant Biol, 2017, 5978-85 CrossRef PubMed Google Scholar

[391] Wang P., Zhang W., Mao C., Xu G., Zhao F.J.. The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. J Exp Bot, 2016, 676051-6059 CrossRef PubMed Google Scholar

[392] Wang P., Du Y., Hou Y.J., Zhao Y., Hsu C.C., Yuan F., Zhu X., Tao W.A., Song C.P., Zhu J.K.. Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci USA, 2015, 112613-618 CrossRef PubMed ADS Google Scholar

[393] Wang P., Zhao Y., Li Z., Hsu C.C., Liu X., Fu L., Hou Y.J., Du Y., Xie S., Zhang C., et al. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol Cell, 2018d, 69100-112.e6 CrossRef PubMed Google Scholar

[394] Wang Q., Qu G.P., Kong X., Yan Y., Li J., Jin J.B.. Arabidopsis small ubiquitin-related modifier protease ASP1 positively regulates abscisic acid signaling during early seedling development. J Integr Plant Biol, 2018e, 60924-937 CrossRef PubMed Google Scholar

[395] Wang X., Ding Y., Li Z., Shi Y., Wang J., Hua J., Gong Z., Zhou J.M., Yang S.. PUB25 and PUB26 promote plant freezing tolerance by degrading the cold signaling negative regulator MYB15. Dev Cell, 2019, 51222-235.e5 CrossRef PubMed Google Scholar

[396] Wang Z., Ruan W., Shi J., Zhang L., Xiang D., Yang C., Li C., Wu Z., Liu Y., Yu Y., et al. Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proc Natl Acad Sci USA, 2014, 11114953-14958 CrossRef PubMed ADS Google Scholar

[397] Ward J.M., Mäser P., Schroeder J.I.. Plant ion channels: gene families, physiology, and functional genomics analyses. Annu Rev Physiol, 2009, 7159-82 CrossRef Google Scholar

[398] Weinl S., Kudla J.. The CBL-CIPK Ca2+-decoding signaling network: function and perspectives. New Phytol, 2009, 184517-528 CrossRef PubMed Google Scholar

[399] Weng J.K., Ye M., Li B., Noel J.P.. Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell, 2016, 166881-893 CrossRef PubMed Google Scholar

[400] Wild R., Gerasimaite R., Jung J.Y., Truffault V., Pavlovic I., Schmidt A., Saiardi A., Jessen H.J., Poirier Y., Hothorn M., et al. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science, 2016, 352986-990 CrossRef PubMed ADS Google Scholar

[401] Wong C.K.E., Cobbett C.S.. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol, 2009, 18171-78 CrossRef PubMed Google Scholar

[402] Wu A., Allu A.D., Garapati P., Siddiqui H., Dortay H., Zanor M.I., Asensi-Fabado M.A., Munné-Bosch S., Antonio C., Tohge T., et al. JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell, 2012, 24482-506 CrossRef PubMed Google Scholar

[403] Wu F., Chi Y., Jiang Z., Xu Y., Xie L., Huang F., Wan D., Ni J., Yuan F., Wu X., et al. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature, 2020, 578577-581 CrossRef PubMed ADS Google Scholar

[404] Wu Q., Wang M., Shen J., Chen D., Zheng Y., Zhang W.. ZmOST1 mediates abscisic acid regulation of guard cell ion channels and drought stress responses. J Integr Plant Biol, 2019, 61478-491 CrossRef PubMed Google Scholar

[405] Wu Q., Zhang X., Peirats-Llobet M., Belda-Palazon B., Wang X., Cui S., Yu X., Rodriguez P.L., An C.. Ubiquitin ligases RGLG1 and RGLG5 regulate abscisic acid signaling by controlling the turnover of phosphatase PP2CA. Plant Cell, 2016, 282178-2196 CrossRef PubMed Google Scholar

[406] Xiong L., Ishitani M., Lee H., Zhu J.K.. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell, 2001, 132063-2083 CrossRef PubMed Google Scholar

[407] Xu J., Shi S., Wang L., Tang Z., Lv T., Zhu X., Ding X., Wang Y., Zhao F.J., Wu Z.. OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytol, 2017, 2151090-1101 CrossRef PubMed Google Scholar

[408] Xu W., Dai W., Yan H., Li S., Shen H., Chen Y., Xu H., Sun Y., He Z., Ma M.. Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant, 2015, 8722-733 CrossRef PubMed Google Scholar

[409] Xu Z.Y., Lee K.H., Dong T., Jeong J.C., Jin J.B., Kanno Y., Kim D.H., Kim S.Y., Seo M., Bressan R.A., et al. A vacuolar β-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis. Plant Cell, 2012, 242184-2199 CrossRef PubMed Google Scholar

[410] Yaeno T., Iba K.. BAH1/NLA, a RING-type ubiquitin E3 ligase, regulates the accumulation of salicylic acid and immune responses to Pseudomonas syringae DC3000. Plant Physiol, 2008, 1481032-1041 CrossRef PubMed Google Scholar

[411] Yamada K., Fukao Y., Hayashi M., Fukazawa M., Suzuki I., Nishimura M.. Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem, 2007, 28237794-37804 CrossRef PubMed Google Scholar

[412] Yamaguchi T., Aharon G.S., Sottosanto J.B., Blumwald E.. Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proc Natl Acad Sci USA, 2005, 10216107-16112 CrossRef PubMed ADS Google Scholar

[413] Yamaguchi T., Apse M.P., Shi H., Blumwald E.. Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity. Proc Natl Acad Sci USA, 2003, 10012510-12515 CrossRef PubMed ADS Google Scholar

[414] Yan H., Xu W., Xie J., Gao Y., Wu L., Sun L., Feng L., Chen X., Zhang T., Dai C., et al. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nat Commun, 2019, 102562 CrossRef PubMed ADS Google Scholar

[415] Yan J., Wang P., Wang P., Yang M., Lian X., Tang Z., Huang C.F., Salt D.E., Zhao F.J.. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. Plant Cell Environ, 2016, 391941-1954 CrossRef PubMed Google Scholar

[416] Yang T., Chaudhuri S., Yang L., Du L., Poovaiah B.W.. A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants. J Biol Chem, 2010a, 2857119-7126 CrossRef Google Scholar

[417] Yang T., Shad Ali G., Yang L., Du L., Reddy A.S.N., Poovaiah B.W.. Calcium/calmodulin-regulated receptor-like kinase CRLK1 interacts with MEKK1 in plants. Plant Signal Behav, 2010b, 5991-994 CrossRef PubMed Google Scholar

[418] Yang Y., Guo Y.. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol, 2018, 217523-539 CrossRef PubMed Google Scholar

[419] Yang Z., Wang C., Xue Y., Liu X., Chen S., Song C.P., Yang Y., Guo Y.. Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance. Nat Commun, 2019, 101199 CrossRef PubMed ADS Google Scholar

[420] Yao L., Cheng X., Gu Z., Huang W., Li S., Wang L., Wang Y.F., Xu P., Ma H., Ge X.. The AWPM-19 family protein OsPM1 mediates abscisic acid influx and drought response in rice. Plant Cell, 2018, 301258-1276 CrossRef PubMed Google Scholar

[421] Ye K., Li H., Ding Y., Shi Y., Song C.P., Gong Z., Yang S.. BRASSINOSTEROID-INSENSITIVE2 negatively regulates the stability of transcription factor ICE1 in response to cold stress in Arabidopsis. Plant Cell, 2019, 312682-2696 CrossRef PubMed Google Scholar

[422] Ye Y., Li P., Xu T., Zeng L., Cheng D., Yang M., Luo J., Lian X.. OsPT4 contributes to arsenate uptake and transport in rice. Front Plant Sci, 2017, 82197 CrossRef PubMed Google Scholar

[423] Yin P., Fan H., Hao Q., Yuan X., Wu D., Pang Y., Yan C., Li W., Wang J., Yan N.. Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol, 2009, 161230-1236 CrossRef PubMed Google Scholar

[424] Yoshida T., Mogami J., Yamaguchi-Shinozaki K.. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol, 2014, 21133-139 CrossRef PubMed Google Scholar

[425] Yoshida T., Ohama N., Nakajima J., Kidokoro S., Mizoi J., Nakashima K., Maruyama K., Kim J.M., Seki M., Todaka D., et al. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genomics, 2011, 286321-332 CrossRef PubMed Google Scholar

[426] Yu F., Lou L., Tian M., Li Q., Ding Y., Cao X., Wu Y., Belda-Palazon B., Rodriguez P.L., Yang S., et al. ESCRT-I component VPS23A affects ABA signaling by recognizing ABA receptors for endosomal degradation. Mol Plant, 2016, 91570-1582 CrossRef PubMed Google Scholar

[427] Yu F., Qian L., Nibau C., Duan Q., Kita D., Levasseur K., Li X., Lu C., Li H., Hou C., et al. FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proc Natl Acad Sci USA, 2012, 10914693-14698 CrossRef PubMed ADS Google Scholar

[428] Yu J., Han J., Kim Y.J., Song M., Yang Z., He Y., Fu R., Luo Z., Hu J., Liang W., et al. Two rice receptor-like kinases maintain male fertility under changing temperatures. Proc Natl Acad Sci USA, 2017, 11412327-12332 CrossRef PubMed Google Scholar

[429] Yu Y., Assmann S.M.. Inter-relationships between the heterotrimeric Gβ subunit AGB1, the receptor-like kinase FERONIA, and RALF1 in salinity response. Plant Cell Environ, 2018, 412475-2489 CrossRef PubMed Google Scholar

[430] Yuan F., Yang H., Xue Y., Kong D., Ye R., Li C., Zhang J., Theprungsirikul L., Shrift T., Krichilsky B., et al. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature, 2014, 514367-371 CrossRef PubMed ADS Google Scholar

[431] Zeevaart J.A.D.. Changes in the levels of abscisic acid and its metabolites in excised leaf blades of Xanthium strumarium during and after water stress. Plant Physiol, 1980, 66672-678 CrossRef PubMed Google Scholar

[432] Zhang A., Ren H.M., Tan Y.Q., Qi G.N., Yao F.Y., Wu G.L., Yang L.W., Hussain J., Sun S.J., Wang Y.F.. S-type anion channels SLAC1 and SLAH3 function as essential negative regulators of inward K+ channels and stomatal opening in Arabidopsis. Plant Cell, 2016a, 28949-965 CrossRef Google Scholar

[433] Zhang B., Wu S., Zhang Y., Xu T., Guo F., Tang H., Li X., Wang P., Qian W., Xue Y..