SCIENCE CHINA Life Sciences, Volume 63 , Issue 6 : 886-897(2020) https://doi.org/10.1007/s11427-020-1679-1

Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation

More info
  • ReceivedFeb 27, 2020
  • AcceptedMar 12, 2020
  • PublishedMar 16, 2020



We thank Dr. Nidhi Singh for her suggestions in molecular modeling. We thank the captain, crew and scientists of R/V HEINCKE expeditions HE443. This research was financed by the National Natural Science Foundation of China (91851105, 31622002, 31970105, 31600093, and 31700430), the Shenzhen Science and Technology Program (JCYJ20170818091727570 and KQTD20180412181334790), the Key Project of Department of Education of Guangdong Province (2017KZDXM071), the China Postdoctoral Science Foundation (2018M633111), the DFG (Deutsche Forschungsgemeinschaft) Cluster of Excellence EXC 309 “The Ocean in the Earth System - MARUM - Center for Marine Environmental Sciences” (project ID 49926684) and the University of Bremen.

Interest statement

The author(s) declare that they have no conflict of interest.

Supplementary data




Figure S1 Maximum likelihood tree of Gerdarchaeota MAGs built on a concatenated alignment of 55 archaeal genes.

Figure S2 Average nucleotide identity (ANI) (a) and amino acid identity (AAI) of Asgard (b) archaeal MAGs.

Figure S3 Pan-genome analysis of protein clusters within all Asgard MAGs using the Anvi’o software.

Figure S4 Maximum likelihood phylogenetic analyses of Topoisomerase IB, ribophorin I, and DNA-directed RNA polymerase A.

Figure S5 Key potential metabolic pathways of Asgard archaea.

Figure S6 Phylogenetic position of the Gerdarchaeota cytochrome c oxidases subunit II.

Figure S7 Phylogenetic position of the Gerdarchaeota rhodopsins.

Figure S8 Abundance of (a) peptidases and (b) carbohydrate-active enzymes in Asgard MAGs.

Figure S9 Phylogenetic position of the Gerdarchaeota [NiFe]-hydrogenases.

Figure S10 Phylogenetic maximum likelihood tree of RuBisCO amino acid sequences (large subunit).

Figure S11 Diversity and biotope of Asgard archaea.

Figure S12 Protein tree based on mcrA gene sequences as identified in the scaffolds.

Figure S13 Molecular modelling and dynamics of MCR complex.

Figure S14 Phylogenetic position and evolution of Asgard archaea mcrA genes.

Figure S15 Protein trees of Asgard archaea (a) McrB and (b) McrG.

Figure S16 Phylogenetic position of the Gerdarchaeota nifH.

Table S1 Information of sedimental samples analysed in this study

Table S2 Overview of Asgard archaea genomic bins

Table S3 The 16S rRNA gene identity (%) of Asgard groups Asgard lineage 1 to Asgard lineage 5 with other Asgard groups

Table S4 Accession numbers list of INTERPRO (IPR) domains and UniProtKB protein sequences related to ESPs

Table S5 Expression of ESPs in the novel Asgard archaea

Table S6 Gene annotation of Asgard archaea based on the NCBI-nr database, KEGG database, and InterProScan tool

Table S7 Overview of the transcript abundance (TPM) in surface and subsurface sediments at the phylum level

Table S8 ORFs of the scaffolds with cytochrome c oxidases

Table S9 Carbohydrate active enzymes numbers for each phylum

Table S10 Overview of 170 archaeal libraries that include Asgard archaeal 16S rRNA sequences

Table S11 Amino acid degradation pathways in Asgard archaea MAGs

Table S12 Summary of intracellular and extracellular peptidases from Asgard archaea MAGs.

Table S13 Characteristics of Asgard phyla

Supplementary Data 1 Phylogenetic position of Gerdarchaeota cytochrome c oxidases (newick format)

Supplementary Data 2 Phylogenetic position of Gerdarchaeota rhodopsins (newick format)

The supporting information is available online at http://life.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Bagos P.G., Tsirigos K.D., Plessas S.K., Liakopoulos T.D., Hamodrakas S.J.. Prediction of signal peptides in archaea. Protein Eng Des Sel, 2008, 2227-35 CrossRef Google Scholar

[2] Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol, 2012, 19455-477 CrossRef Google Scholar

[3] Bergkessel M., Basta D.W., Newman D.K.. The physiology of growth arrest: uniting molecular and environmental microbiology. Nat Rev Microbiol, 2016, 14549-562 CrossRef Google Scholar

[4] Biddle J.F., Lipp J.S., Lever M.A., Lloyd K.G., Sorensen K.B., Anderson R., Fredricks H.F., Elvert M., Kelly T.J., Schrag D.P., et al. Heterotrophic archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA, 2006, 1033846-3851 CrossRef Google Scholar

[5] Breithaupt J.L., Smoak J.M., Smith Iii T.J., Sanders C.J., Hoare A.. Organic carbon burial rates in mangrove sediments: Strengthening the global budget. Glob Biogeochem Cycle, 2012, 262012GB004375 CrossRef Google Scholar

[6] Bulzu P.A., Andrei A.Ş., Salcher M.M., Mehrshad M., Inoue K., Kandori H., Beja O., Ghai R., Banciu H.L.. Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nat Microbiol, 2019, 41129-1137 CrossRef Google Scholar

[7] Burdige D.J.. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets. Chem Rev, 2007, 107467-485 CrossRef Google Scholar

[8] Burns J.A., Pittis A.A., Kim E.. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat Ecol Evol, 2018, 2697-704 CrossRef Google Scholar

[9] Caspi R., Foerster H., Fulcher C.A., Kaipa P., Krummenacker M., Latendresse M., Paley S., Rhee S.Y., Shearer A.G., Tissier C., et al. The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res, 2007, 36D623-D631 CrossRef Google Scholar

[10] Criscuolo A., Gribaldo S.. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol, 2010, 10210 CrossRef Google Scholar

[11] Da Cunha V., Gaia M., Gadelle D., Nasir A., Forterre P.. Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes. PLoS Genet, 2017, 13e1006810 CrossRef PubMed Google Scholar

[12] Da Cunha V., Gaia M., Nasir A., Forterre P.. Asgard archaea do not close the debate about the universal tree of life topology. PLoS Genet, 2018, 14e1007215 CrossRef PubMed Google Scholar

[13] De Rosa E., Checchetto V., Franchin C., Bergantino E., Berto P., Szabò I., Giacometti G.M., Arrigoni G., Costantini P.. [NiFe]-hydrogenase is essential for cyanobacterium Synechocystis sp. PCC 6803 aerobic growth in the dark. Sci Rep, 2015, 512424 CrossRef Google Scholar

[14] Delmont T.O., Eren A.M.. Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ, 2018, 6e4320 CrossRef Google Scholar

[15] Durbin A.M., Teske A.. Archaea in organic-lean and organic-rich marine subsurface sediments: an environmental gradient reflected in distinct phylogenetic lineages. Front Microbiol, 2012, 3168 CrossRef Google Scholar

[16] Eddy S.R.. Accelerated profile HMM searches. PLoS Comput Biol, 2011, e1002195 CrossRef PubMed Google Scholar

[17] Greening C., Biswas A., Carere C.R., Jackson C.J., Taylor M.C., Stott M.B., Cook G.M., Morales S.E.. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J, 2016, 10761-777 CrossRef Google Scholar

[18] Hua Z.S., Qu Y.N., Zhu Q., Zhou E.M., Qi Y.L., Yin Y.R., Rao Y.Z., Tian Y., Li Y.X., Liu L., et al. Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nat Commun, 2018, 92832 CrossRef Google Scholar

[19] Huang J.M., Baker B.J., Li J.T., Wang Y.. New microbial lineages capable of carbon fixation and nutrient cycling in deep-sea sediments of the northern South China Sea. Appl Environ Microbiol, 2019, 85pii: e00523-19 CrossRef PubMed Google Scholar

[20] Huerta-Cepas J., Forslund K., Coelho L.P., Szklarczyk D., Jensen L.J., von Mering C., Bork P.. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol, 2017, 342115-2122 CrossRef Google Scholar

[21] Hyatt D., Chen G.L., LoCascio P.F., Land M.L., Larimer F.W., Hauser L.J.. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 2010, 11119 CrossRef Google Scholar

[22] Imachi H., Nobu M.K., Nakahara N., Morono Y., Ogawara M., Takaki Y., Takano Y., Uematsu K., Ikuta T., Ito M., et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature, 2020, 577519-525 CrossRef Google Scholar

[23] Inagaki F., Suzuki M., Takai K., Oida H., Sakamoto T., Aoki K., Nealson K.H., Horikoshi K.. Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol, 2003, 697224-7235 CrossRef Google Scholar

[24] Inagaki F., Takai K., Komatsu T., Kanamatsu T., Fujioka K., Horikoshi K.. Archaeology of Archaea: geomicrobiological record of Pleistocene thermal events concealed in a deep-sea subseafloor environment. Extremophiles, 2001, 5385-392 CrossRef Google Scholar

[25] Jay Z.J., Beam J.P., Dlakić M., Rusch D.B., Kozubal M.A., Inskeep W.P.. Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats. Nat Microbiol, 2018, 3732-740 CrossRef Google Scholar

[26] Jones P., Binns D., Chang H.Y., Fraser M., Li W., McAnulla C., McWilliam H., Maslen J., Mitchell A., Nuka G., et al. InterProScan 5: genome-scale protein function classification. Bioinformatics, 2014, 301236-1240 CrossRef Google Scholar

[27] Jørgensen S.L., Thorseth I.H., Pedersen R.B., Baumberger T., Schleper C.. Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the Arctic mid-ocean spreading ridge. Front Microbiol, 2013, 4299 CrossRef Google Scholar

[28] Joshi, N., and Fass, J. (2011). Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33). Google Scholar

[29] Kanehisa M., Sato Y., Morishima K.. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol, 2016, 428726-731 CrossRef Google Scholar

[30] Kang D.D., Froula J., Egan R., Wang Z.. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ, 2015, 3e1165 CrossRef Google Scholar

[31] Kennedy H., Beggins J., Duarte C.M., Fourqurean J.W., Holmer M., Marbà N., Middelburg J.J.. Seagrass sediments as a global carbon sink: Isotopic constraints. Glob Biogeochem Cycle, 2010, 24GB4026 CrossRef Google Scholar

[32] Konishi Y., Asai S., Tokushige M., Suzuki T.. Kinetics of the bioleaching of chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi. Biotechnol Prog, 1999, 15681-688 CrossRef Google Scholar

[33] Kopylova E., Noé L., Touzet H.. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics, 2012, 283211-3217 CrossRef Google Scholar

[34] Li H., Durbin R.. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 251754-1760 CrossRef Google Scholar

[35] Li M., Baker B.J., Anantharaman K., Jain S., Breier J.A., Dick G.J.. Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea. Nat Commun, 2015, 68933 CrossRef Google Scholar

[36] Liang L., Wang Y., Sivan O., Wang F.. Metal-dependent anaerobic methane oxidation in marine sediment: Insights from marine settings and other systems. Sci China Life Sci, 2019, 621287-1295 CrossRef Google Scholar

[37] Liu Y., Zhou Z., Pan J., Baker B.J., Gu J.D., Li M.. Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota. ISME J, 2018, 121021-1031 CrossRef Google Scholar

[38] Lloyd, K.G., Steen, A.D., Ladau, J., Yin, J., and Crosby, L. (2018). Phylogenetically novel uncultured microbial cells dominate Earth microbiomes. MSystems 3, e00055–00018. Google Scholar

[39] Manoharan L., Kozlowski J.A., Murdoch R.W., Löffler F.E., Sousa F.L., Schleper C.. Metagenomes from coastal marine sediments give insights into the ecological role and cellular features of Loki- and Thorarchaeota. mBio, 2019, 10e02039-19 CrossRef PubMed Google Scholar

[40] Marreiros B.C., Calisto F., Castro P.J., Duarte A.M., Sena F.V., Silva A.F., Sousa F.M., Teixeira M., Refojo P.N., Pereira M.M.. Exploring membrane respiratory chains. Biochim Biophys Acta Bioenerg, 2016, 18571039-1067 CrossRef Google Scholar

[41] Mcleod E., Chmura G.L., Bouillon S., Salm R., Björk M., Duarte C.M., Lovelock C.E., Schlesinger W.H., Silliman B.R.. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ, 2011, 9552-560 CrossRef Google Scholar

[42] Mistry J., Finn R.D., Eddy S.R., Bateman A., Punta M.. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res, 2013, 41e121 CrossRef Google Scholar

[43] Miyatake T., MacGregor B.J., Boschker H.T.S.. Depth-related differences in organic substrate utilization by major microbial groups in intertidal marine sediment. Appl Environ Microbiol, 2013, 79389-392 CrossRef Google Scholar

[44] Müller V., Chowdhury N.P., Basen M.. Electron bifurcation: A long-hidden energy-coupling mechanism. Annu Rev Microbiol, 2018, 72331-353 CrossRef Google Scholar

[45] Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q.. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol, 2014, 32268-274 CrossRef Google Scholar

[46] Nunoura T., Chikaraishi Y., Izaki R., Suwa T., Sato T., Harada T., Mori K., Kato Y., Miyazaki M., Shimamura S., et al. A primordial and reversible TCA cycle in a facultatively chemolithoautotrophic thermophile. Science, 2018, 359559-563 CrossRef Google Scholar

[47] Orsi W.D., Edgcomb V.P., Christman G.D., Biddle J.F.. Gene expression in the deep biosphere. Nature, 2013, 499205-208 CrossRef Google Scholar

[48] Pan J., Chen Y., Wang Y., Zhou Z., Li M.. Vertical distribution of Bathyarchaeotal communities in mangrove wetlands suggests distinct niche preference of Bathyarchaeota subgroup 6. Microb Ecol, 2019, 77417-428 CrossRef Google Scholar

[49] Parks D.H., Imelfort M., Skennerton C.T., Hugenholtz P., Tyson G.W.. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res, 2015, 251043-1055 CrossRef Google Scholar

[50] Peng Y., Leung H.C.M., Yiu S.M., Chin F.Y.L.. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics, 2012, 281420-1428 CrossRef Google Scholar

[51] Peters J.W., Schut G.J., Boyd E.S., Mulder D.W., Shepard E.M., Broderick J.B., King P.W., Adams M.W.W.. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim Biophys Acta Mol Cell Res, 2015, 18531350-1369 CrossRef Google Scholar

[52] Pruesse E., Peplies J., Glöckner F.O.. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics, 2012, 281823-1829 CrossRef Google Scholar

[53] Pushkarev A., Inoue K., Larom S., Flores-Uribe J., Singh M., Konno M., Tomida S., Ito S., Nakamura R., Tsunoda S.P., et al. A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature, 2018, 558595-599 CrossRef Google Scholar

[54] Rawlings N.D., Barrett A.J., Finn R.. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res, 2015, 44D343-D350 CrossRef Google Scholar

[55] Rinke C., Rubino F., Messer L.F., Youssef N., Parks D.H., Chuvochina M., Brown M., Jeffries T., Tyson G.W., Seymour J.R., et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J, 2019, 13663-675 CrossRef Google Scholar

[56] Segerer A., Neuner A., Kristjansson J.K., Stetter K.O.. Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol, 1986, 36559-564 CrossRef Google Scholar

[57] Seitz K.W., Dombrowski N., Eme L., Spang A., Lombard J., Sieber J.R., Teske A.P., Ettema T.J.G., Baker B.J.. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat Commun, 2019, 101822 CrossRef Google Scholar

[58] Seitz K.W., Lazar C.S., Hinrichs K.U., Teske A.P., Baker B.J.. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J, 2016, 101696-1705 CrossRef Google Scholar

[59] Sieber C.M.K., Probst A.J., Sharrar A., Thomas B.C., Hess M., Tringe S.G., Banfield J.F.. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol, 2018, 3836-843 CrossRef Google Scholar

[60] Silberstein S., Collins P.G., Kelleher D.J., Gilmore R.. The essential OST2 gene encodes the 16-kD subunit of the yeast oligosaccharyltransferase, a highly conserved protein expressed in diverse eukaryotic organisms. J Cell Biol, 1995, 131371-383 CrossRef Google Scholar

[61] Sørensen J., Jørgensen B.B., Revsbech N.P.. A comparison of oxygen, nitrate, and sulfate respiration in coastal marine sediments. Microb Ecol, 1979, 5105-115 CrossRef Google Scholar

[62] Sousa F.L., Neukirchen S., Allen J.F., Lane N., Martin W.F.. Lokiarchaeon is hydrogen dependent. Nat Microbiol, 2016, 116034 CrossRef Google Scholar

[63] Spang A., Caceres E.F., Ettema T.J.G.. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science, 2017, 357eaaf3883 CrossRef Google Scholar

[64] Spang A., Saw J.H., Jørgensen S.L., Zaremba-Niedzwiedzka K., Martijn J., Lind A.E., van Eijk R., Schleper C., Guy L., Ettema T.J.G.. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature, 2015, 521173-179 CrossRef Google Scholar

[65] Spang A., Stairs C.W., Dombrowski N., Eme L., Lombard J., Caceres E.F., Greening C., Baker B.J., Ettema T.J.G.. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat Microbiol, 2019, 41138-1148 CrossRef Google Scholar

[66] Takai, K., and Horikoshi, K. (1999). Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152, 1285–1297. Google Scholar

[67] Reitner, J., and Thiel, V. (2011). Archaea. In Encyclopedia of Geobiology. (Berlin: Springer). pp. 64–69. Google Scholar

[68] Vanwonterghem I., Evans P.N., Parks D.H., Jensen P.D., Woodcroft B.J., Hugenholtz P., Tyson G.W.. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol, 2016, 116170 CrossRef Google Scholar

[69] Vetriani C., Jannasch H.W., MacGregor B.J., Stahl D.A., Reysenbach A.L.. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl Environ Microbiol, 1999, 654375-4384 CrossRef Google Scholar

[70] Villanueva L., Schouten S., Damsté J.S.S.. Phylogenomic analysis of lipid biosynthetic genes of archaea shed light on the ‘lipid divide’. Environ Microbiol, 2017, 1954-69 CrossRef Google Scholar

[71] Yin X., Wu W., Maeke M., Richter-Heitmann T., Kulkarni A.C., Oni O.E., Wendt J., Elvert M., Friedrich M.W.. CO2 conversion to methane and biomass in obligate methylotrophic methanogens in marine sediments. ISME J, 2019, 132107-2119 CrossRef Google Scholar

[72] Yokobori S., Nakajima Y., Akanuma S., Yamagishi A.. Birth of archaeal cells: molecular phylogenetic analyses of G1P dehydrogenase, G3P dehydrogenases, and glycerol kinase suggest derived features of archaeal membranes having G1P polar lipids. Archaea, 2016, 20161-16 CrossRef Google Scholar

[73] Yu N.Y., Wagner J.R., Laird M.R., Melli G., Rey S., Lo R., Dao P., Sahinalp S.C., Ester M., Foster L.J., et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics, 2010, 261608-1615 CrossRef Google Scholar

[74] Zaremba-Niedzwiedzka K., Caceres E.F., Saw J.H., Bäckström D., Juzokaite L., Vancaester E., Seitz K.W., Anantharaman K., Starnawski P., Kjeldsen K.U., et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature, 2017, 541353-358 CrossRef Google Scholar

[75] Zhang C.J., Pan J., Duan C.H., Wang Y.M., Liu Y., Sun J., Zhou H.C., Song X., Li M.. Prokaryotic diversity in mangrove sediments across southeastern China fundamentally differs from that in other biomes. mSystems, 2019, 4e00442-19 CrossRef PubMed Google Scholar

[76] Zhang Y., Zhai W.D.. Shallow-ocean methane leakage and degassing to the atmosphere: triggered by offshore oil-gas and methane hydrate explorations. Front Mar Sci, 2015, 200034 CrossRef Google Scholar

[77] Zhou Z., Liu Y., Li M., Gu J.D.. Two or three domains: a new view of tree of life in the genomics era. Appl Microbiol Biotechnol, 2018, 1023049-3058 CrossRef Google Scholar

[78] Zhou Z., Liu Y., Lloyd K.G., Pan J., Yang Y., Gu J.D., Li M.. Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan, Thermoprofundales (MBG-D archaea). ISME J, 2019, 13885-901 CrossRef Google Scholar

[79] Zhou Z., Liu Y., Xu W., Pan J., Luo Z.H., Li M.. Genome- and community-level interaction insights into carbon utilization and element cycling functions of Hydrothermarchaeota in hydrothermal sediment. mSystems, 2020, 5e00795-19 CrossRef PubMed Google Scholar

[80] Zhou Z., Meng H., Liu Y., Gu J.D., Li M.. Stratified bacterial and archaeal community in mangrove and intertidal wetland mudflats revealed by high throughput 16S rRNA gene sequencing. Front Microbiol, 2017, 802148 CrossRef Google Scholar

  • Figure 1

    Phylogenetic positions and ESPs of Asgard archaea reconstructed from coastal sediments. A, Maximum likelihood tree of Gerdarchaeota MAGs built on a concatenated alignment of 122 archaea-specific protein markers. The tree was inferred with LG+F+R10 mixture mode in IQ-TREE and rooted with DPANN and Euryarchaeota. Asgard archaea MAGs obtained in this study are marked in bold face. B, Phylogenetic position of Asgard archaeal 16S rRNA genes. Red color represents 16S rRNA genes from newly discovered Asgard MAGs, and blue color represents sequences from references. The tree was built using the IQ-TREE software with GTR+I+G4 mixture mode and rooted with Crenarchaeota. C, ESPs identified in Gerdarchaeota and other Asgard archaea. Asgard archaea MAGs obtained in this study are marked bold. Colors indicate phylum-level assignment (see 1A).

  • Figure 2

    Key potential metabolic pathways of Gerdarchaeota. Solid lines represent pathway steps present in 8 MAGs assigned to Gerdarchaeota. Dashed lines represent pathway steps not identified. Circles represent transcripts from surface sediments and rectangles represent transcripts from subsurface samples. The relative abundance of the transcripts (transcripts per million reads, TPM) for each gene is marked with different colors. Pathway abbreviations: PPP, pentose phosphate pathway (archaea); CBB, Calvin–Benson–Bassham cycle; EMP, Embden–Meyerhof–Parnas pathway, THMPT WL, tetrahydromethanopterin-dependent Wood–Ljungdahl pathway; TCA cycle, tricarboxylic acid cycle. Detailed metabolic information for the MAGs is available in Figure S5, ables S6 and S7 in Supporting Information.

  • Figure 3

    Ecological niches of Asgard archaea in coastal sediments. Dashed lines represent pathways with no transcript for the key genes. Detailed information is available in Figure S5, Tables S6 and S7 in Supporting Information.


Contact and support