the National Key Research and Development Program of China(2017YFD0500400)
the National Natural Science Foundation of China(81420108023,81772219)
distinguished scientist grant from Shenyang Agricultural University.
This work was supported by the National Key Research and Development Program of China (2017YFD0500400), the National Natural Science Foundation of China (81420108023, 81772219) and distinguished scientist grant from Shenyang Agricultural University.
The author(s) declare that they have no conflict of interest.
SUPPORTING INFORMATION The supporting information is available online at
[1]
Abdin, A.A., Ashour, D.S., and Shoheib, Z.S. (2013). Artesunate effect on schistosome thioredoxin glutathione reductase and cytochrome c peroxidase as new molecular targets in
[2] Aderka D., Wysenbeek A., Engelmann H., Cope A.P., Brennan F., Molad Y., Hornik V., Levo Y., Maini R.N., Feldmann M., et al. Correlation between serum levels of soluble tumor necrosis factor receptor and disease activity in systemic lupus erythematosus. Arthrit Rheumat, 2010, 36: 1111-1120 CrossRef Google Scholar
[3] Bhadra R., Gigley J.P., Khan I.A.. The CD8 T-cell road to immunotherapy of toxoplasmosis. Immunotherapy, 2011a, 3: 789-801 CrossRef Google Scholar
[4] Bhadra R., Gigley J.P., Weiss L.M., Khan I.A.. Control of Toxoplasma reactivation by rescue of dysfunctional CD8+ T-cell response via PD-1-PDL-1 blockade. Proc Natl Acad Sci USA, 2011b, 108: 9196-9201 CrossRef ADS Google Scholar
[5] Cheng C., Ho W.E., Goh F.Y., Guan S.P., Kong L.R., Lai W.Q., Leung B.P., Wong W.S.F.. Anti-malarial drug artesunate attenuates experimental allergic asthma via inhibition of the phosphoinositide 3-kinase/Akt pathway. PLoS ONE, 2011, 6: e20932 CrossRef ADS Google Scholar
[6]
Chimanuka
B.,
Francois
G.,
Timperman
G.,
Heyden
Y.V.,
Holenz
J.,
Plaizier-Vercammen
J.,
Bringmann
G..
A comparison of the stage-specific efficacy of chloroquine, artemether and dioncophylline B against the rodent malaria parasite
[7]
Couper
K.N.,
Roberts
C.W.,
Brombacher
F.,
Alexander
J.,
Johnson
L.L..
[8] Cruz-González D.J., Gómez-Martin D., Layseca-Espinosa E., Baranda L., Abud-Mendoza C., Alcocer-Varela J., González-Amaro R., Monsiváis-Urenda A.E.. Analysis of the regulatory function of natural killer cells from patients with systemic lupus erythematosus. Clin Exp Immunol, 2018, 191: 288-300 CrossRef Google Scholar
[9] Dong, Y.J., Li, W.D., and Tu, Y.Y. (2003) Effect of dihydro-qinghaosu on auto-antibody production, TNF alpha secretion and pathologic change of lupus nephritis in BXSB mice (in Chinese). Zhongguo Zhong Xi Yi Jie He Za Zhi 23, 676–679. Google Scholar
[10] Du X.X., Li Y.J., Wu C.L., Zhou J.H., Han Y., Sui H., Wei X.L., Liu L., Huang P., Yuan H.H., et al. Initiation of apoptosis, cell cycle arrest and autophagy of esophageal cancer cells by dihydroartemisinin. Biomed Pharmacother, 2013, 67: 417-424 CrossRef Google Scholar
[11] Dunay I.R., Chan W.C., Haynes R.K., Sibley L.D.. Artemisone and artemiside control acute and reactivated toxoplasmosis in a murine model. Antimicrobial Agents Chemother, 2009, 53: 4450-4456 CrossRef Google Scholar
[12]
Efferth
T..
From ancient herb to modern drug:
[13] Feng Y., Zhu X., Wang Q., Jiang Y., Shang H., Cui L., Cao Y.. Allicin enhances host pro-inflammatory immune responses and protects against acute murine malaria infection. Malar J, 2012, 11: 268 CrossRef Google Scholar
[14] Gordon, C., Li, C.K., and Isenberg, D.A. (2009). Systemic lupus erythematosus. N Engl J Med 38, 73–80. Google Scholar
[15]
Guo, Y., Xu, P., Xuan, Y., Wu, L., and Li, S. (1997) Effect of artesunate on vltrastructure of schistosomula
[16] He Y., Fan J., Lin H., Yang X., Ye Y., Liang L., Zhan Z., Dong X., Sun L., Xu H.. The anti-malaria agent artesunate inhibits expression of vascular endothelial growth factor and hypoxia-inducible factor-1α in human rheumatoid arthritis fibroblast-like synoviocyte. Rheumatol Int, 2011, 31: 53-60 CrossRef Google Scholar
[17] Hou L.F., He S.J., Li X., Yang Y., He P.L., Zhou Y., Zhu F.H., Yang Y.F., Li Y., Tang W., et al. Oral administration of artemisinin analog SM934 ameliorates lupus syndromes in MRL/lpr mice by inhibiting Th1 and Th17 cell responses. Arthrit Rheumat, 2011, 63: 2445-2455 CrossRef Google Scholar
[18] Hou L., Block K.E., Huang H.. Artesunate abolishes germinal center B cells and inhibits autoimmune arthritis. PLoS ONE, 2014, 9: e104762 CrossRef ADS Google Scholar
[19] Huang X., Xie Z., Liu F., Han C., Zhang D., Wang D., Bao X., Sun J., Wen C., Fan Y.. Dihydroartemisinin inhibits activation of the Toll-like receptor 4 signaling pathway and production of type I interferon in spleen cells from lupus-prone MRL/lpr mice. Int Immunopharmacol, 2014, 22: 266-272 CrossRef Google Scholar
[20]
Klonis
N.,
Crespo-Ortiz
M.P.,
Bottova
I.,
Abu-Bakar
N.,
Kenny
S.,
Rosenthal
P.J.,
Tilley
L..
Artemisinin activity against
[21] Langermans, J.A., Van der Hulst, M.E., Nibbering, P.H., Hiemstra, P.S., Fransen, L., and Van Furth, R. (1992). IFN-gamma-induced L-arginine-dependent toxoplasmastatic activity in murine peritoneal macrophages is mediated by endogenous tumor necrosis factor-alpha. J Immunol 148, 568–574. Google Scholar
[22] Lewis, J.E., Fu, S.M., and Gaskin, F. (2013). Autoimmunity, end organ damage, and the origin of autoantibodies and autoreactive T cells in systemic lupus erythematosus. Discov Med 15, 85–92. Google Scholar
[23] Li G.Q., Guo X.B., Fu L.C., Jian H.X., Wang X.H.. Clinical trials of artemisinin and its derivatives in the treatment of malaria in China. Trans R Soc Trop Med Hygiene, 1994, 88: 5-6 CrossRef Google Scholar
[24] Li T., Chen H., Wei N., Mei X., Zhang S., Liu D., Gao Y., Bai S., Liu X., Zhou Y.. Anti-inflammatory and immunomodulatory mechanisms of artemisinin on contact hypersensitivity. Int Immunopharmacol, 2012, 12: 144-150 CrossRef Google Scholar
[25]
Li
T.,
Chen
H.,
Yang
Z.,
Liu
X.G.,
Zhang
L.M.,
Wang
H..
Evaluation of the immunosuppressive activity of artesunate
[26] Li W., Dong Y., Tu Y., Lin Z.. Dihydroarteannuin ameliorates lupus symptom of BXSB mice by inhibiting production of TNF-alpha and blocking the signaling pathway NF-kappa B translocation. Int Immunopharmacol, 2006, 6: 1243-1250 CrossRef Google Scholar
[27] Li X., Li T.T., Zhang X.H., Hou L.F., Yang X.Q., Zhu F.H., Tang W., Zuo J.P.. Artemisinin analogue SM934 ameliorates murine experimental autoimmune encephalomyelitis through enhancing the expansion and functions of regulatory T cell. PLoS ONE, 2013b, 8: e74108 CrossRef ADS Google Scholar
[28] Li Y.. Qinghaosu (artemisinin): Chemistry and pharmacology. Acta Pharmacol Sin, 2012, 33: 1141-1146 CrossRef Google Scholar
[29] Listed, N. (1979). Antimalaria studies on Qinghaosu. Chin Med J (Engl) 92, 811–816. Google Scholar
[30] Lourenco E.V., Procaccini C., Ferrera F., Iikuni N., Singh R.P., Filaci G., Matarese G., Shi F.D., Brahn E., Hahn B.H., et al. Modulation of p38 MAPK activity in regulatory T cells after tolerance with anti-DNA Ig peptide in (NZB × NZW)F1 lupus mice. J Immunol, 2009, 182: 7415-7421 CrossRef Google Scholar
[31]
Mack
D.G.,
Mcleod
R..
Human
[32]
Mahmoudvand
H.,
Ziaali
N.,
Ghazvini
H.,
Shojaee
S.,
Keshavarz
H.,
Esmaeilpour
K.,
Sheibani
V..
[33]
Matowicka-Karna
J.,
Dymicka-Piekarska
V.,
Kemona
H..
Does
[34] Meira C.S., Pereira-Chioccola V.L., Vidal J.E., de Mattos C.C.B., Motoie G., Costa-Silva T.A., Gava R., Frederico F.B., de Mattos L.C.. Cerebral and ocular toxoplasmosis related with IFN-γ, TNF-α, and IL-10 levels. Front Microbiol, 2014, 5: 492 CrossRef Google Scholar
[35] Meshnick S.R.. Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasitol, 2002, 32: 1655-1660 CrossRef Google Scholar
[36]
Munoz
M.,
Liesenfeld
O.,
Heimesaat
M.M..
Immunology of
[37]
Nagamune
K.,
Beatty
W.L.,
Sibley
L.D..
Artemisinin induces calcium-dependent protein secretion in the protozoan parasite
[38] Qinghaosu Research Group, Institute of Biophysics Academia Sinica. (1980). Crystal structure and absolute configuration of Qinghaosu. Sci China Ser A, 380–396. Google Scholar
[39] Shakoor N., Michalska M., Harris C.A., Block J.A.. Drug-induced systemic lupus erythematosus associated with etanercept therapy. Lancet, 2002, 359: 579-580 CrossRef Google Scholar
[40] Schofield L., Villaquiran J., Ferreira A., Schellekens H., Nussenzweig R., Nussenzweig V.. γ Interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature, 1987, 330: 664-666 CrossRef ADS Google Scholar
[41] Shi X., Wang L., Li X., Bai J., Li J., Li S., Wang Z., Zhou M.. Dihydroartemisinin induces autophagy-dependent death in human tongue squamous cell carcinoma cells through DNA double-strand break-mediated oxidative stress. Oncotarget, 2017, 8: 45981-45993 CrossRef Google Scholar
[42] Shlomchik M.J., Craft J.E., Mamula M.J.. From T to B and back again: positive feedback in systemic autoimmune disease. Nat Rev Immunol, 2001, 1: 147-153 CrossRef Google Scholar
[43] Sibley, L.D., Adams, L.B., Fukutomi, Y., and Krahenbuhl, J.L. (1991). Tumor necrosis factor-alpha triggers antitoxoplasmal activity of IFN-gamma primed macrophages. J Immunol 147, 2340–2345. Google Scholar
[44]
Skinner
T.S.,
Manning
L.S.,
Johnston
W.A.,
Davis
T.M.E..
[45] Studnicka-Benke A., Steiner G., Petera P., Smolen J.S.. Tumour necrosis factor alpha and its soluble receptors parallel clinical disease and autoimmune activity in systemic lupus erythematosus. Rheumatology, 1996, 35: 1067-1074 CrossRef Google Scholar
[46] Stumhofer J.S., Laurence A., Wilson E.H., Huang E., Tato C.M., Johnson L.M., Villarino A.V., Huang Q., Yoshimura A., Sehy D., et al. Interleukin 27 negatively regulates the development of interleukin 17–producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol, 2006, 7: 937-945 CrossRef Google Scholar
[47]
Sun
H.,
Meng
X.,
Han
J.,
Zhang
Z.,
Wang
B.,
Bai
X.,
Zhang
X..
Anti-cancer activity of DHA on gastric cancer—an
[48] Tajima M., Wakita D., Noguchi D., Chamoto K., Yue Z., Fugo K., Ishigame H., Iwakura Y., Kitamura H., Nishimura T.. IL-6–dependent spontaneous proliferation is required for the induction of colitogenic IL-17–producing CD8+ T cells. J Exp Med, 2008, 205: 1019-1027 CrossRef Google Scholar
[49] Tsokos, G.C. (2011). Systemic lupus erythematosus. N Engl J Med 365, 2110–2121. Google Scholar
[50]
Utzinger, J., Chollet, J., You, J., Mei, J., Tanner, M., and Xiao, S. (2001). Effect of combined treatment with praziquantel and artemether on
[51]
Villegas-Mendez
A.,
de Souza
J.B.,
Murungi
L.,
Hafalla
J.C.R.,
Shaw
T.N.,
Greig
R.,
Riley
E.M.,
Couper
K.N..
Heterogeneous and tissue-specific regulation of effector T cell responses by IFN-gamma during
[52] Wilson M.S., Feng C.G., Barber D.L., Yarovinsky F., Cheever A.W., Sher A., Grigg M., Collins M., Fouser L., Wynn T.A.. Redundant and pathogenic roles for IL-22 in mycobacterial, protozoan, and helminth infections. J Immunol, 2010, 184: 4378-4390 CrossRef Google Scholar
[53] Wu, L., Xu, Y., Guo, Y., Xu, P., and Li, S. (1996). Studies on the effect of artesunate to the energy-metabolic enzymes (in Chinese). Chin J Schistosom Contr 5, 267–269. Google Scholar
[54] Wen X., Zhang D., Kikuchi Y., Jiang Y., Nakamura K., Xiu Y., Tsurui H., Takahashi K., Abe M., Ohtsuji M., et al. Transgene-mediated hyper-expression of IL-5 inhibits autoimmune disease but increases the risk of B cell chronic lymphocytic leukemia in a model of murine lupus. Eur J Immunol, 2004, 34: 2740-2749 CrossRef Google Scholar
[55]
Xiao
S.H.,
Booth
M.,
Tanner
M..
The prophylactic effects of artemether against
[56] Xing C., Zhu G., Xiao H., Fang Y., Liu X., Han G., Chen G., Hou C., Shen B., Li Y., et al. B cells regulate thymic CD8+T cell differentiation in lupus-prone mice. Oncotarget, 2017, 8: 89486-89499 CrossRef Google Scholar
[57] Xu C.H., Liu Y., Xiao L.M., Guo C.G., Zheng S.Y., Zeng E.M., Li D.H.. Dihydroartemisinin treatment exhibits antitumor effects in glioma cells through induction of apoptosis. Mol Med Rep, 2017, 16: 9528-9532 CrossRef Google Scholar
[58] Xu, L.M., Chen, X.R., and Tu, Y.Y. (2002). Effect of hydroartemisinin on lupus BXSB mice (in Chinese). Chin J Dermatovenerol Integr Trad West Med 1, 19–20. Google Scholar
[59] Xu H., He Y., Yang X., Liang L., Zhan Z., Ye Y., Yang X., Lian F., Sun L.. Anti-malarial agent artesunate inhibits TNF-alpha-induced production of proinflammatory cytokines via inhibition of NF-kappaB and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology, 2007, 46: 920-926 CrossRef Google Scholar
[60] Zhang S., Shi L., Ma H., Li H., Li Y., Lu Y., Wang Q., Li W.. Dihydroartemisinin induces apoptosis in human gastric cancer cell line BGC-823 through activation of JNK1/2 and p38 MAPK signaling pathways. J Recept Signal Transduct, 2017, 37: 174-180 CrossRef Google Scholar
[61] Zhao, X., Zhong, H., Wang, R., Liu, D., Waxman, S., Zhao, L., and Jing, Y. (2015) Dihydroartemisinin and its derivative induce apoptosis in acute myeloid leukemia through Noxa-mediated pathway requiring iron and endoperoxide moiety. Oncotarget 6, 5582–5596. Google Scholar
[62] Zhao Y.G., Wang Y., Guo Z., Gu A., Dan H.C., Baldwin A.S., Hao W., Wan Y.Y.. Dihydroartemisinin ameliorates inflammatory disease by its reciprocal effects on Th and regulatory T cell function via modulating the mammalian target of rapamycin pathway. J Immunol, 2012, 189: 4417-4425 CrossRef Google Scholar
[63]
Zhou
W.,
Wu
J.,
Wu
Q.,
Wang
J.,
Zhou
Y.,
Zhou
R.,
He
P.,
Li
X.,
Yang
Y.,
Zhang
Y., et al.
A novel artemisinin derivative, 3-(12-beta-artemisininoxy) phenoxyl succinic acid (SM735), mediates immunosuppressive effects
Figure 1
The number of splenic CD8+ T cells in the DHA group. The population distribution of splenic CD8+ T cells (A and B) was detected by flow cytometry on days 2, 4, 6, 8, 15, 20, and 25 following treatment with DHA. The spleen was observed after DHA treatment, and the spleen indexes (spleen weight (mg)×10/body weight (g) × 100%) were calculated. C, The spleen index of the control and DHA groups. The results are representative of three independent experiments with three to five mice per group per experiment. Data are presented as the mean±SD. *,
Figure 2
DHA stimulated the proliferation of circulatory Th cells, but down-regulated circulatory B cells in healthy mice over a certain period of time. The number and distribution of circulatory Th (A and B) and circulatory B cells (C and D) were detected by flow cytometry on days 2, 4, 6, 8, 15, 20, and 25 after treatment with DHA. The results are representative of three independent experiments with three to five mice per group per experiment. Data are presented as the mean±SD. *,
Figure 3
Detection of cytokine production during gavage by flow cytometry. A, Comparison of the Th1 cytokine levels (TNF-α) in the sera from the CMC-Na group and CMC-Na+DHA group. B, Comparison of the Th2 cytokine levels (IL-5) in the sera from the CMC-Na group and CMC-Na+DHA group. C, Heatmaps directly showing the difference in the detected cytokines. The results are representative of three independent experiments with seven to ten mice per group per experiment. Data are expressed as the mean±SD. *,
Figure 4
The ratio of circulating Th, CD8+ T, and B cells in the
Figure 5
Detection of cytokine production during infection with
Figure 6
The number of splenic CD8+ T cells in the
Figure 7
The number of splenic NK and NKT cells of the
Figure 8
The number of circulating Th cells in the
Figure 9
The number of circulating NK and NKT cells in the
Figure 10
Detection of cytokine production during infection with