SCIENCE CHINA Life Sciences, Volume 63 , Issue 8 : 1159-1167(2020) https://doi.org/10.1007/s11427-019-1571-8

FET-based nanobiosensors for the detection of smell and taste

More info
  • ReceivedSep 9, 2019
  • AcceptedOct 26, 2019
  • PublishedJan 21, 2020


Interest statement

The author(s) declare that they have no conflict of interest.


[1] Ahn S.R., An J.H., Jang I.H., Na W., Yang H., Cho K.H., Lee S.H., Song H.S., Jang J., Park T.H.. High-performance bioelectronic tongue using ligand binding domain T1R1 VFT for umami taste detection. Biosens Bioelectron, 2018, 117: 628-636 CrossRef PubMed Google Scholar

[2] Ahn S.R., An J.H., Song H.S., Park J.W., Lee S.H., Kim J.H., Jang J., Park T.H.. Duplex bioelectronic tongue for sensing umami and sweet tastes based on human taste receptor nanovesicles. ACS Nano, 2016, 10: 7287-7296 CrossRef Google Scholar

[3] Allen B. ., Kichambare P. ., Star A.. Carbon nanotube field-effect-transistor-based biosensors. Adv Mater, 2007, 19: 1439-1451 CrossRef Google Scholar

[4] Azarbad M.H., Jeleń H.. Determination of hexanal—an indicator of lipid oxidation by static headspace gas chromatography (SHS-GC) in fat-rich food matrices. Food Anal Methods, 2015, 8: 1727-1733 CrossRef Google Scholar

[5] Bayburt T.H., Sligar S.G.. Membrane protein assembly into nanodiscs. FEBS Lett, 2010, 584: 1721-1727 CrossRef PubMed Google Scholar

[6] Bellan L.M., Wu D., Langer R.S.. Current trends in nanobiosensor technology. WIREs Nanomed Nanobiotechnol, 2011, 3: 229-246 CrossRef PubMed Google Scholar

[7] Biju V.. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev, 2014, 43: 744-764 CrossRef PubMed Google Scholar

[8] Chambers, J.P., Arulanandam, B.P., Matta, L.L., Weis, A., and Valdes, J.J. (2008). Biosensor recognition elements. Curr Issues Mol Biol 10, 1–12. Google Scholar

[9] Chun L., Zhang W., Liu J.. Structure and ligand recognition of class C GPCRs. Acta Pharmacol Sin, 2012, 33: 312-323 CrossRef PubMed Google Scholar

[10] Contractor A.Q., Sureshkumar T.N., Narayanan R., Sukeerthi S., Lal R., Srinivasa R.S.. Conducting polymer-based biosensors. Electrochim Acta, 1994, 39: 1321-1324 CrossRef Google Scholar

[11] Dalgaard P., Madsen H.L., Samieian N., Emborg J.. Biogenic amine formation and microbial spoilage in chilled garfish (Belone belone belone)—effect of modified atmosphere packaging and previous frozen storage. J Appl Microbiol, 2006, 101: 80-95 CrossRef PubMed Google Scholar

[12] Deng C., Zhang X., Li N.. Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 2004, 808: 269-277 CrossRef PubMed Google Scholar

[13] Denisov I.G., Sligar S.G.. Nanodiscs in membrane biochemistry and biophysics. Chem Rev, 2017, 117: 4669-4713 CrossRef PubMed Google Scholar

[14] Ha D., Sun Q., Su K., Wan H., Li H., Xu N., Sun F., Zhuang L., Hu N., Wang P.. Recent achievements in electronic tongue and bioelectronic tongue as taste sensors. Senss Actuat B-Chem, 2015, 207: 1136-1146 CrossRef Google Scholar

[15] Hagn F., Nasr M.L., Wagner G.. Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR. Nat Protoc, 2018, 13: 79-98 CrossRef PubMed Google Scholar

[16] Jin H.J., Lee S.H., Kim T.H., Park J., Song H.S., Park T.H., Hong S.. Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction. Biosens Bioelectron, 2012, 35: 335-341 CrossRef PubMed Google Scholar

[17] Justino C.I.L., Freitas A.C., Pereira R., Duarte A.C., Rocha Santos T.A.P.. Recent developments in recognition elements for chemical sensors and biosensors. TrAC Trends Anal Chem, 2015, 68: 2-17 CrossRef Google Scholar

[18] Kalipatnapu S., Chattopadhyay A.. Membrane protein solubilization: Recent advances and challenges in solubilization of serotonin1A receptors. IUBMB Life (Int Union Biochem Mol Biol-Life), 2005, 57: 505-512 CrossRef PubMed Google Scholar

[19] Kaushal, S., Ridge, K.D., and Khorana, H.G. (1994). Structure and function in rhodopsin: The role of asparagine-linked glycosylation. Proc Natl Acad Sci 91, 4024–4028. Google Scholar

[20] Kim T.H., Lee S.H., Lee J., Song H.S., Oh E.H., Park T.H., Hong S.. Single-carbon-atomic-resolution detection of odorant molecules using a human olfactory receptor-based bioelectronic nose. Adv Mater, 2009, 21: 91-94 CrossRef Google Scholar

[21] Kim T.H., Song H.S., Jin H.J., Lee S.H., Namgung S., Kim U., Park T.H., Hong S.. “Bioelectronic super-taster” device based on taste receptor-carbon nanotube hybrid structures. Lab Chip, 2011, 11: 2262-2267 CrossRef PubMed Google Scholar

[22] Ko H.J., Hyun Park T.. Dual signal transduction mediated by a single type of olfactory receptor expressed in a heterologous system. Biol Chem, 2006, 387: 59-68 CrossRef PubMed Google Scholar

[23] Ko H.J., Lee S.H., Oh E.H., Park T.H.. Specificity of odorant-binding proteins: a factor influencing the sensitivity of olfactory receptor-based biosensors. Bioproc Biosyst Eng, 2010, 33: 55-62 CrossRef PubMed Google Scholar

[24] Ko H.J., Park T.H.. Piezoelectric olfactory biosensor: ligand specificity and dose-dependence of an olfactory receptor expressed in a heterologous cell system. Biosens Bioelectron, 2005, 20: 1327-1332 CrossRef PubMed Google Scholar

[25] Kwon O.S., Lee S.H., Park S.J., An J.H., Song H.S., Kim T., Oh J.H., Bae J., Yoon H., Park T.H., et al. Large-scale graphene micropattern nano-biohybrids: High-performance transducers for FET-type flexible fluidic HIV immunoassays. Adv Mater, 2013, 25: 4177-4185 CrossRef PubMed Google Scholar

[26] Kwon O.S., Song H.S., Park S.J., Lee S.H., An J.H., Park J.W., Yang H., Yoon H., Bae J., Park T.H., et al. An ultrasensitive, selective, multiplexed superbioelectronic nose that mimics the human sense of smell. Nano Lett, 2015, 15: 6559-6567 CrossRef PubMed Google Scholar

[27] Kwon O.S., Song H.S., Park T.H., Jang J.. Conducting nanomaterial sensor using natural receptors. Chem Rev, 2018, 119: 36-93 CrossRef PubMed Google Scholar

[28] Lee S.H., Jun S.B., Ko H.J., Kim S.J., Park T.H.. Cell-based olfactory biosensor using microfabricated planar electrode. Biosens Bioelectron, 2009, 24: 2659-2664 CrossRef PubMed Google Scholar

[29] Lee S.H., Jin H.J., Song H.S., Hong S., Park T.H.. Bioelectronic nose with high sensitivity and selectivity using chemically functionalized carbon nanotube combined with human olfactory receptor. J Biotech, 2012a, 157: 467-472 CrossRef PubMed Google Scholar

[30] Lee S.H., Kwon O.S., Song H.S., Park S.J., Sung J.H., Jang J., Park T.H.. Mimicking the human smell sensing mechanism with an artificial nose platform. Biomaterials, 2012b, 33: 1722-1729 CrossRef PubMed Google Scholar

[31] Lee S.H., Lim J.H., Park J., Hong S., Park T.H.. Bioelectronic nose combined with a microfluidic system for the detection of gaseous trimethylamine. Biosens Bioelectron, 2015, 71: 179-185 CrossRef PubMed Google Scholar

[32] Lee M., Yang H., Kim D., Yang M., Park T.H., Hong S.. Human-like smelling of a rose scent using an olfactory receptor nanodisc-based bioelectronic nose. Sci Rep, 2018, 8: 13945 CrossRef PubMed Google Scholar

[33] Li X., Staszewski L., Xu H., Durick K., Zoller M., Adler E.. Human receptors for sweet and umami taste. Proc Natl Acad Sci USA, 2002, 99: 4692-4696 CrossRef PubMed Google Scholar

[34] Li Z., Hobson P., An W., Burch M.D., House J., Yang M.. Earthy odor compounds production and loss in three cyanobacterial cultures. Water Res, 2012, 46: 5165-5173 CrossRef PubMed Google Scholar

[35] Lim J.H., Oh E.H., Park J., Hong S., Park T.H.. Ion-channel-coupled receptor-based platform for a real-time measurement of G-protein-coupled receptor activities. ACS Nano, 2015, 9: 1699-1706 CrossRef PubMed Google Scholar

[36] Lim J.H., Park J., Ahn J.H., Jin H.J., Hong S., Park T.H.. A peptide receptor-based bioelectronic nose for the real-time determination of seafood quality. Biosens Bioelectron, 2013, 39: 244-249 CrossRef PubMed Google Scholar

[37] Lim J.H., Park J., Oh E.H., Ko H.J., Hong S., Park T.H.. Nanovesicle-based bioelectronic nose for the diagnosis of lung cancer from human blood. Adv Healthcare Mater, 2014, 3: 360-366 CrossRef PubMed Google Scholar

[38] Liu Q., Ye W., Xiao L., Du L., Hu N., Wang P.. Extracellular potentials recording in intact olfactory epithelium by microelectrode array for a bioelectronic nose. Biosens Bioelectron, 2010, 25: 2212-2217 CrossRef PubMed Google Scholar

[39] Liu Q., Zhang F., Zhang D., Hu N., Hsia K.J., Wang P.. Extracellular potentials recording in intact taste epithelium by microelectrode array for a taste sensor. Biosens Bioelectron, 2013, 43: 186-192 CrossRef PubMed Google Scholar

[40] Luna G., Aparicio R., García-González D.L.. A tentative characterization of white dry-cured hams from Teruel (Spain) by SPME-GC. Food Chem, 2006, 97: 621-630 CrossRef Google Scholar

[41] de March C.A., Ryu S.E., Sicard G., Moon C., Golebiowski J.. Structure-odour relationships reviewed in the postgenomic era. Flav Fragr J, 2015, 30: 342-361 CrossRef Google Scholar

[42] Neuhaus E.M., Mashukova A., Zhang W., Barbour J., Hatt H.. A specific heat shock protein enhances the expression of mammalian olfactory receptor proteins. Chem Senses, 2006, 31: 445-452 CrossRef PubMed Google Scholar

[43] Oh W.K., Kwon O.S., Jang J.. Conducting polymer nanomaterials for biomedical applications: Cellular interfacing and biosensing. Polymer Rev, 2013, 53: 407-442 CrossRef Google Scholar

[44] Park C.S., Yoon H., Kwon O.S.. Graphene-based nanoelectronic biosensors. J Indust Eng Chem, 2016, 38: 13-22 CrossRef Google Scholar

[45] Park J., Lim J.H., Jin H.J., Namgung S., Lee S.H., Park T.H., Hong S.. A bioelectronic sensor based on canine olfactory nanovesicle–carbon nanotube hybrid structures for the fast assessment of food quality. Analyst, 2012a, 137: 3249-3254 CrossRef PubMed Google Scholar

[46] Park S.J., Kwon O.S., Lee S.H., Song H.S., Park T.H., Jang J.. Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett, 2012b, 12: 5082-5090 CrossRef PubMed Google Scholar

[47] Pumera M., Ambrosi A., Bonanni A., Chng E.L.K., Poh H.L.. Graphene for electrochemical sensing and biosensing. TrAC Trends Anal Chem, 2010, 29: 954-965 CrossRef Google Scholar

[48] Ravula T., Hardin N.Z., Ramamoorthy A.. Polymer nanodiscs: Advantages and limitations. Chem Phys Lipids, 2019, 219: 45-49 CrossRef PubMed Google Scholar

[49] Sankaran S., Khot L.R., Panigrahi S.. Biology and applications of olfactory sensing system: A review. Senss Actuat B-Chem, 2012, 171–172: 1-17 CrossRef Google Scholar

[50] Son M., Cho D., Lim J.H., Park J., Hong S., Ko H.J., Park T.H.. Real-time monitoring of geosmin and 2-methylisoborneol, representative odor compounds in water pollution using bioelectronic nose with human-like performance. Biosens Bioelectron, 2015, 74: 199-206 CrossRef PubMed Google Scholar

[51] Son M., Kim D., Kang J., Lim J.H., Lee S.H., Ko H.J., Hong S., Park T.H.. Bioelectronic nose using odorant binding protein-derived peptide and carbon nanotube field-effect transistor for the assessment of Salmonella contamination in food. Anal Chem, 2016, 88: 11283-11287 CrossRef PubMed Google Scholar

[52] Son M., Kim D., Ko H.J., Hong S., Park T.H.. A portable and multiplexed bioelectronic sensor using human olfactory and taste receptors. Biosens Bioelectron, 2017a, 87: 901-907 CrossRef PubMed Google Scholar

[53] Son M., Lee J.Y., Ko H.J., Park T.H.. Bioelectronic nose: An emerging tool for odor standardization. Trends Biotech, 2017b, 35: 301-307 CrossRef PubMed Google Scholar

[54] Song H.S., Jin H.J., Ahn S.R., Kim D., Lee S.H., Kim U.K., Simons C.T., Hong S., Park T.H.. Bioelectronic tongue using heterodimeric human taste receptor for the discrimination of sweeteners with human-like performance. ACS Nano, 2014, 8: 9781-9789 CrossRef PubMed Google Scholar

[55] Song H.S., Kwon O.S., Lee S.H., Park S.J., Kim U.K., Jang J., Park T.H.. Human taste receptor-functionalized field effect transistor as a human-like nanobioelectronic tongue. Nano Lett, 2013, 13: 172-178 CrossRef PubMed Google Scholar

[56] Swiegers J.H., Chambers P.J., Pretorius I.S.. Olfaction and taste: Human perception, physiology and genetics. Aust J Grape Wine Res, 2005, 11: 109-113 CrossRef Google Scholar

[57] Tian S.Y., Deng S.P., Chen Z.X.. Multifrequency large amplitude pulse voltammetry: A novel electrochemical method for electronic tongue. Senss Actuat B-Chem, 2007, 123: 1049-1056 CrossRef Google Scholar

[58] Wang B., Cancilla J.C., Torrecilla J.S., Haick H.. Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase. Nano Lett, 2014, 14: 933-938 CrossRef PubMed Google Scholar

[59] Wasilewski T., Gębicki J., Kamysz W.. Bioelectronic nose: Current status and perspectives. Biosens Bioelectron, 2017, 87: 480-494 CrossRef PubMed Google Scholar

[60] Wu T., Lo Y.. Synthetic peptide mimicking of binding sites on olfactory receptor protein for use in ‘electronic nose’. J Biotech, 2000, 80: 63-73 CrossRef Google Scholar

[61] Yáñez-Sedeño P., Pingarrón J.M., Riu J., Rius F.X.. Electrochemical sensing based on carbon nanotubes. TrAC Trends Anal Chem, 2010, 29: 939-953 CrossRef Google Scholar

[62] Yang H., Kim D., Kim J., Moon D., Song H.S., Lee M., Hong S., Park T.H.. Nanodisc-based bioelectronic nose using olfactory receptor produced in Escherichia coli for the assessment of the death-associated odor cadaverine. ACS Nano, 2017, 11: 11847-11855 CrossRef Google Scholar

[63] Yoon H., Lee S.H., Kwon O.S., Song H.S., Oh E.H., Park T.H., Jang J.. Polypyrrole nanotubes conjugated with human olfactory receptors: High-Performance transducers for FET-Type bioelectronic noses. Angew Chem Int Ed, 2009, 48: 2755-2758 CrossRef PubMed Google Scholar

  • Figure 1

    Scheme of nanobiosensors composed of olfactory/taste receptors and nanomaterials.

  • Figure 2

    Schematics of nanobiosensors showing olfactory receptor based biomaterials that are immobilized on nanomaterials. OR, olfactory receptor.

  • Figure 3

    Strategies to utilize human taste receptors as biomaterials for developing nanobiosensors. A, Schematic representation of the construction of nanovesicles including hTAS1R1/hTAS1R3 or hTAS2R1/hTAS1R3 and the integration of nanovesicles with nanomaterials for detecting umami or sweet tastes. B, Schematic diagram of an alternative approach to utilize VFTs of hTAS1R1 possibly produced in bacterial expression system, and integration of VFTs with nanomaterials for detecting umami tastes. VFT, venus flytrap; CRD, cysteine rich domain; TMD, transmembrane domain.

  • Table 1   Table 1 Natural biomaterial-based nanobiosensors that detect various odorsa)




    Targets (phase)



    (limit of detection)








    10 pmol L–1

    (Yang et al., 2017)




    Geraniol, citronellol (liquid)


    1 fmol L–1,10 fmol L–1

    (Lee et al., 2018)

    olfactory receptor-derived peptide



    Trimethylamine (liquid, gas)


    10 fmol L–1,100 ppt

    (Lim et al., 2013), (Lee et al., 2015)

    odorant binding protein-derived peptide





    1 fmol L–1

    (Son et al., 2016)







    10 fmol L–1

    (Lim et al., 2014)

    hOR3A4, hOR51S1




    2-methylisoborneol (liquid)

    Earthy, musty

    10 ng L–1

    (Son et al., 2015)


    Recombinant protein

    CVD graphene*


    (liquid, gas)


    0.1 fmol L–1,0.02 ppt

    (Kwon et al., 2015), (Lee et al., 2012b)



    Recombinant protein


    Amyl butyrate (liquid)


    400 fmol L–1

    (Yoon et al., 2009)

    CVD graphene

    0.04 fmol L–1,0.01 fmol L–1

    (Park et al., 2012b), (Kwon et al., 2015)


    100 fmol L–1,1 fmol L–1

    (Kim et al., 2009),

    (Lee et al., 2012a)



    1 fmol L–1

    (Jin et al., 2012), (Lim et al., 2015)


    Detergent micelle





    1 pmol L–1

    (Son et al., 2017a)


    Detergent micelle





    1 pmol L–1



    1 fmol L–1

    (Park et al., 2012a)

    *, CNT-FET, carbon nanotube-field effect transistor; CPNT, conducting polymer nanotube; CVD, chemical vapor deposition.

  • Table 2   Table 2 Human taste receptor-based nanobioelectronic tongue detecting bitter, umami, and sweet tastea)







    (limit of detection)




    Recombinant protein


    PTC*, PROP*

    1 fmol L–1,10 fmol L–1

    (Song et al., 2013)

    Recombinant protein



    100 fmol L–1

    (Kim et al., 2011)

    Recombinant protein (detergent micelle)



    1 pmol L–1

    (Son et al., 2017a)








    500 µmol L–1

    (Song et al., 2014)

    hTAS1R1/hTAS1R3, hTAS1R2/hTAS1R3


    CVD graphene-FET*

    MSG*, sucrose

    100 nmol L–1,1 μmol L–1

    (Ahn et al., 2016)


    VFT* domain of T1R1

    Recombinant protein (detergent micelle)

    CVD graphene-FET


    1 nmol L–1

    (Ahn et al., 2018)

    *, CNT-FET, carbon nanotube-field effect transistor; CPNT, conducting polymer nanotube; CVD, chemical vapor deposition; MSG, monosodium glutamate; PROP, propylthiouracil; PTC, phenylthiocarbamide; VFT, venus flytrap.


Contact and support