SCIENCE CHINA Life Sciences, Volume 63 , Issue 1 : 165-168(2020) https://doi.org/10.1007/s11427-019-1561-1

Three paternally imprinted regions are sequentially required in prenatal and postnatal mouse development

More info
  • ReceivedOct 9, 2019
  • AcceptedOct 11, 2019
  • PublishedNov 6, 2019


There is no abstract available for this article.


The work in the authors’ laboratory is currently supported by the grant from Ministry of Science and Technology of China (2018YFC1005004 to XL) and Science and Technology Commission of Shanghai Municipality (18PJ1407700 to XL).

Interest statement

The author(s) declare that they have no conflict of interest.


[1] Barlow, D.P., and Bartolomei, M.S. (2014). Genomic imprinting in mammals. Cold Spring Harb Perspect Biol 6. Google Scholar

[2] Brambilla R., Gnesutta N., Minichiello L., White G., Roylance A.J., Herron C.E., Ramsey M., Wolfer D.P., Cestari V., Rossi-Arnaud C., et al. A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature, 1997, 390: 281-286 CrossRef PubMed ADS Google Scholar

[3] Fasano S., Bezard E., D'Antoni A., Francardo V., Indrigo M., Qin L., Doveró S., Cerovic M., Cenci M.A., Brambilla R.. Inhibition of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) signaling in the striatum reverts motor symptoms associated with L-dopa-induced dyskinesia. Proc Natl Acad Sci USA, 2010, 107: 21824-21829 CrossRef PubMed ADS Google Scholar

[4] Itier J.M., Tremp G.L., Léonard J.F., Multon M.C., Ret G., Schweighoffer F., Tocqué B., Bluet-Pajot M.T., Cormier V., Dautry F.. Imprinted gene in postnatal growth role. Nature, 1998, 393: 125-126 CrossRef PubMed ADS Google Scholar

[5] Kawahara M., Wu Q., Takahashi N., Morita S., Yamada K., Ito M., Ferguson-Smith A.C., Kono T.. High-frequency generation of viable mice from engineered bi-maternal embryos. Nat Biotechnol, 2007, 25: 1045-1050 CrossRef PubMed Google Scholar

[6] Kono T., Obata Y., Wu Q., Niwa K., Ono Y., Yamamoto Y., Park E.S., Seo J.S., Ogawa H.. Birth of parthenogenetic mice that can develop to adulthood. Nature, 2004, 428: 860-864 CrossRef PubMed ADS Google Scholar

[7] Li Q., Li Y., Yin Q., Huang S., Wang K., Zhuo L., Li W., Chang B., Li J.. Temporal regulation of prenatal embryonic development by paternal imprinted loci. Sci China Life Sci, 2019, 62 CrossRef PubMed Google Scholar

[8] Li W., Shuai L., Wan H., Dong M., Wang M., Sang L., Feng C., Luo G.Z., Li T., Li X., et al. Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature, 2012, 490: 407-411 CrossRef PubMed ADS Google Scholar

[9] Li, X. (2013). Genomic imprinting is a parental effect established in mammalian germ cells. Curr Top Dev Biol 102, 35–59. Google Scholar

[10] Li Z.K., Wang L.Y., Wang L.B., Feng G.H., Yuan X.W., Liu C., Xu K., Li Y.H., Wan H.F., Zhang Y., et al. Generation of bimaternal and bipaternal mice from hypomethylated haploid ESCs with imprinting region deletions. Cell Stem Cell, 2018, 23: 665-676.e4 CrossRef PubMed Google Scholar

[11] Lin S.P., Youngson N., Takada S., Seitz H., Reik W., Paulsen M., Cavaille J., Ferguson-Smith A.C.. Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat Genet, 2003, 35: 97-102 CrossRef PubMed Google Scholar

[12] MacDonald W.A., Mann M.R.W.. Epigenetic regulation of genomic imprinting from germ line to preimplantation. Mol Reprod Dev, 2014, 81: 126-140 CrossRef PubMed Google Scholar

[13] McGrath J., Solter D.. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell, 1984, 37: 179-183 CrossRef Google Scholar

[14] Monk D., Mackay D.J.G., Eggermann T., Maher E.R., Riccio A.. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet, 2019, 20: 235-248 CrossRef PubMed Google Scholar

[15] Surani M.A.H., Barton S.C., Norris M.L.. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature, 1984, 308: 548-550 CrossRef PubMed ADS Google Scholar

[16] Thorvaldsen J.L., Duran K.L., Bartolomei M.S.. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev, 1998, 12: 3693-3702 CrossRef PubMed Google Scholar

[17] Yang H., Shi L., Wang B.A., Liang D., Zhong C., Liu W., Nie Y., Liu J., Zhao J., Gao X., et al. Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell, 2012, 149: 605-617 CrossRef PubMed Google Scholar

[18] Zhong C., Xie Z., Yin Q., Dong R., Yang S., Wu Y., Yang L., Li J.. Parthenogenetic haploid embryonic stem cells efficiently support mouse generation by oocyte injection. Cell Res, 2016, 26: 131-134 CrossRef PubMed Google Scholar

[19] Zhong, C., Yin, Q., Xie, Z., Bai, M., Dong, R., Tang, W., Xing, Y-H, Zhang, H., Yang, S., Chen, L-L, et al. (2015). CRISPR-Cas9-mediated genetic screening in mice with haploid embryonic stem cells carrying a guide RNA library. Cell Stem Cell 17, 221–232. Google Scholar

  • Figure 1

    Three paternally imprinted regions may function sequentially during mouse development. The Igf2-H19 imprinted region is essential for the embryonic development after implantation with its major roles before mid-gestation. It appears to have some minor roles in late gestation embryos as well as postnatal pups. The Dlk1-Dio3 imprinted region is crucial for the growth and development of late gestation embryos until birth. The Rasgrf1 imprinted region is required for postnatal growth but is dispensable for prenatal development.


Contact and support