SCIENCE CHINA Life Sciences, Volume 61 , Issue 4 : 392-399(2018) https://doi.org/10.1007/s11427-017-9292-7

Theranostical application of nanomedicine for treating central nervous system disorders

More info
  • ReceivedNov 5, 2017
  • AcceptedJan 10, 2018
  • PublishedApr 2, 2018


Funded by

the National Natural Science Foundation of China(31771031,81701829)


This work was supported by the National Natural Science Foundation of China (31771031 and 81701829).

Interest statement

The author(s) declare that they have no conflict of interest.


[1] Adak A., Das G., Barman S., Mohapatra S., Bhunia D., Jana B., Ghosh S.. Biodegradable neuro-compatible peptide hydrogel promotes neurite outgrowth, shows significant neuroprotection, and delivers anti-Alzheimer drug. ACS Appl Mater Interfaces, 2017, 9: 5067-5076 CrossRef Google Scholar

[2] Addington C.P., Heffernan J.M., Millar-Haskell C.S., Tucker E.W., Sirianni R.W., Stabenfeldt S.E.. Enhancing neural stem cell response to SDF-1α gradients through hyaluronic acid-laminin hydrogels. Biomaterials, 2015, 72: 11-19 CrossRef PubMed Google Scholar

[3] Agarwal R., Singh V., Jurney P., Shi L., Sreenivasan S.V., Roy K.. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc Natl Acad Sci USA, 2013, 110: 17247-17252 CrossRef PubMed ADS Google Scholar

[4] Alyautdin R.N., Petrov V.E., Langer K., Berthold A., Kharkevich D.A., Kreuter J.. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharmaceutical Res, 1997, 14: 325-328 CrossRef Google Scholar

[5] Amiri H., Saeidi K., Borhani P., Manafirad A., Ghavami M., Zerbi V.. Alzheimer’s disease: pathophysiology and applications of magnetic nanoparticles as MRI theranostic agents. ACS Chem Neurosci, 2013, 4: 1417-1429 CrossRef PubMed Google Scholar

[6] Borghese, C., Cattaruzza, L., Fau-Pivetta, E., Pivetta, E., Fau-Normanno, N., Normanno, N., Fau-De Luca, A., De Luca, A., Fau-Mazzucato, M., Mazzucato, M., Fau-Celegato, M., and Aldinucci, D. (2013). Gefitinib inhibits the cross-talk between mesenchymal stem cells and prostate cancer cells leading to tumor cell proliferation and inhibition of docetaxel activity. J Cell Biochem 114, 1135-1144. Google Scholar

[7] Cardinale A., Merlo D., Giunchedi P., Biocca S.. Therapeutic application of intrabodies against age-related neurodegenerative disorders. CPD, 2014, 20: 6028-6036 CrossRef Google Scholar

[8] Carroll R.T., Bhatia D., Geldenhuys W., Bhatia R., Miladore N., Bishayee A., Sutariya V.. Brain-targeted delivery of Tempol-loaded nanoparticles for neurological disorders. J Drug Targeting, 2010, 18: 665-674 CrossRef PubMed Google Scholar

[9] Chang J.H., Tsai P.H., Chen W., Chiou S.H., Mou C.Y.. Dual delivery of siRNA and plasmid DNA using mesoporous silica nanoparticles to differentiate induced pluripotent stem cells into dopaminergic neurons. J Mater Chem B, 2017, 5: 3012-3023 CrossRef Google Scholar

[10] Chen G., Chen K.S., Knox J., Inglis J., Bernard A., Martin S.J., Justice A., McConlogue L., Games D., Freedman S.B., et al. A learning deficit related to age and β-amyloid plaques in a mouse model of Alzheimer’s disease. Nature, 2000, 408: 975-979 CrossRef PubMed Google Scholar

[11] Choi I., Lee L.P.. Rapid detection of Aβ aggregation and inhibition by dual functions of gold nanoplasmic particles: catalytic activator and optical reporter. ACS Nano, 2013, 7: 6268-6277 CrossRef PubMed Google Scholar

[12] Das A.M., Seynhaeve A.L.B., Rens J.A.P., Vermeulen C.E., Koning G.A., Eggermont A.M.M., Ten Hagen T.L.M.. Differential TIMP3 expression affects tumor progression and angiogenesis in melanomas through regulation of directionally persistent endothelial cell migration. Angiogenesis, 2013, 17: 163-177 CrossRef PubMed Google Scholar

[13] Delalat B., Sheppard V.C., Rasi Ghaemi S., Rao S., Prestidge C.A., McPhee G., Rogers M.L., Donoghue J.F., Pillay V., Johns T.G., et al. Targeted drug delivery using genetically engineered diatom biosilica. Nat Commun, 2015, 6: 8791 CrossRef PubMed ADS Google Scholar

[14] Demeritte T., Viraka Nellore B.P., Kanchanapally R., Sinha S.S., Pramanik A., Chavva S.R., Ray P.C.. Hybrid graphene oxide based plasmonic-magnetic multifunctional nanoplatform for selective separation and label-free identification of Alzheimer’s disease biomarkers. ACS Appl Mater Interfaces, 2015, 7: 13693-13700 CrossRef Google Scholar

[15] Feigin V.L., Forouzanfar M.H., Krishnamurthi R., Mensah G.A., Connor M., Bennett D.A., Moran A.E., Sacco R.L., Anderson L., Truelsen T., et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet, 2014, 383: 245-255 CrossRef Google Scholar

[16] Gao W., Wang J.. Synthetic micro/nanomotors in drug delivery. Nanoscale, 2014, 6: 10486-10494 CrossRef PubMed ADS Google Scholar

[17] Geldenhuys W., Wehrung D., Groshev A., Hirani A., Sutariya V.. Brain-targeted delivery of doxorubicin using glutathione-coated nanoparticles for brain cancers. Pharm Dev Tech, 2015, 20: 497-506 CrossRef PubMed Google Scholar

[18] Geng J., Li M., Ren J., Wang E., Qu X.. Polyoxometalates as inhibitors of the aggregation of amyloid β peptides associated with Alzheimer’s disease. Angew Chem Int Ed, 2011, 50: 4184-4188 CrossRef PubMed Google Scholar

[19] Goate A., Chartier-Harlin M.C., Mullan M., Brown J., Crawford F., Fidani L., Giuffra L., Haynes A., Irving N., James L., et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature, 1991, 349: 704-706 CrossRef PubMed ADS Google Scholar

[20] Godinho B.M.D.C., Ogier J.R., Darcy R., O'Driscoll C.M., Cryan J.F.. Self-assembling modified β-cyclodextrin nanoparticles as neuronal siRNA delivery vectors: focus on Huntington’s disease. Mol Pharm, 2013, 10: 640-649 CrossRef PubMed Google Scholar

[21] Han Q., Cai S., Yang L., Wang X., Qi C., Yang R., Wang C.. Molybdenum disulfide nanoparticles as multifunctional inhibitors against Alzheimer’s disease. ACS Appl Mater Interfaces, 2017, 9: 21116-21123 CrossRef Google Scholar

[22] Hardy J.A., Higgins G.A.. Alzheimer’s disease: the amyloid cascade hypothesis. Science, 1992, 256: 184-185 CrossRef ADS Google Scholar

[23] He X.P., Deng Q., Cai L., Wang C.Z., Zang Y., Li J., Chen G.R., Tian H.. Fluorogenic resveratrol-confined graphene oxide for economic and rapid detection of Alzheimer’s disease. ACS Appl Mater Interfaces, 2014, 6: 5379-5382 CrossRef PubMed Google Scholar

[24] Hu B., Dai F., Fan Z., Ma G., Tang Q., Zhang X.. Nanotheranostics: Congo red/rutin-MNPs with enhanced magnetic resonance imaging and H2 O2-responsive therapy of Alzheimer’s disease in APPswe/PS1dE9 transgenic mice. Adv Mater, 2015, 27: 5499-5505 CrossRef PubMed Google Scholar

[25] Huang X., Zhang F., Wang H., Niu G., Choi K.Y., Swierczewska M., Zhang G., Gao H., Wang Z., Zhu L., et al. Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery. Biomaterials, 2013, 34: 1772-1780 CrossRef PubMed Google Scholar

[26] Jo D.H., Kim J.H., Lee T.G., Kim J.H.. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. NanoMed-Nanotechnol Biol Med, 2015, 11: 1603-1611 CrossRef PubMed Google Scholar

[27] Khalil, S., Holy, M., Grado, S., Fleming, R., Kurita, R., Nakamura, Y., and Goldfarb, A. (2017). A specialized pathway for erythroid iron delivery through lysosomal trafficking of transferrin receptor 2.Blood Adv 1, 1181-1194. Google Scholar

[28] Kim C.K., Kim T., Choi I.Y., Soh M., Kim D., Kim Y.J., Jang H., Yang H.S., Kim J.Y., Park H.K., et al. Ceria nanoparticles that can protect against ischemic stroke. Angew Chem Int Ed, 2012, 51: 11039-11043 CrossRef PubMed Google Scholar

[29] Kim T., Hyeon T.. Applications of inorganic nanoparticles as therapeutic agents. Nanotechnology, 2014, 25: 012001 CrossRef PubMed ADS Google Scholar

[30] Kouyoumdjian H., Zhu D.C., El-Dakdouki M.H., Lorenz K., Chen J., Li W., Huang X.. Glyconanoparticle aided detection of β-amyloid by magnetic resonance imaging and attenuation of β-amyloid induced cytotoxicity. ACS Chem Neurosci, 2013, 4: 575-584 CrossRef PubMed Google Scholar

[31] Kreuter, J. (2014). Drug delivery to the central nervous system by polymeric nanoparticles: What do we know? Adv Drug Delivery Rev 71, 2-14. Google Scholar

[32] Kwon H.J., Cha M.Y., Kim D., Kim D.K., Soh M., Shin K., Hyeon T., Mook-Jung I.. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano, 2016, 10: 2860-2870 CrossRef Google Scholar

[33] Lai L., Jiang X., Han S., Zhao C., Du T., Rehman F.U., Zheng Y., Li X., Liu X., Jiang H., et al. In vivo biosynthesized zinc and iron oxide nanoclusters for high spatiotemporal dual-modality bioimaging of Alzheimer’s disease. Langmuir, 2017, 33: 9018-9024 CrossRef PubMed Google Scholar

[34] Lee C., Hwang H.S., Lee S., Kim B., Kim J.O., Oh K.T., Lee E.S., Choi H.G., Youn Y.S.. Rabies virus-inspired silica-coated gold nanorods as a photothermal therapeutic platform for treating brain tumors. Adv Mater, 2017, 29: 1605563 CrossRef PubMed Google Scholar

[35] Lee J.H., Ju J.E., Kim B.I., Pak P.J., Choi E.K., Lee H.S., Chung N.. Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environ Toxicol Chem, 2014, 33: 2759-2766 CrossRef PubMed Google Scholar

[36] Lee S.M., Nguyen S.B.T.. Smart nanoscale drug delivery platforms from stimuli-responsive polymers and liposomes. Macromolecules, 2013, 46: 9169-9180 CrossRef PubMed ADS Google Scholar

[37] Leiro, V., Duque Santos, S., Lopes, C.D.F., and Paula Pêgo, A. (2017). Dendrimers as powerful building blocks in central nervous system disease: headed for successful nanomedicine. Adv Func Mater, 1700313. Google Scholar

[38] Li J., Cai P., Shalviri A., Henderson J.T., He C., Foltz W.D., Prasad P., Brodersen P.M., Chen Y., DaCosta R., et al. A multifunctional polymeric nanotheranostic system delivers doxorubicin and imaging agents across the blood-brain barrier targeting brain metastases of breast cancer. ACS Nano, 2014, 8: 9925-9940 CrossRef PubMed Google Scholar

[39] Lin B.L., Zhang J.Z., Lu L.J., Mao J.J., Cao M.H., Mao X.H., Zhang F., Duan X.H., Zheng C.S., Zhang L.M., et al. Superparamagnetic iron oxide nanoparticles-complexed cationic amylose for in vivo magnetic resonance imaging tracking of transplanted stem cells in stroke. Nanomaterials, 2017, 7: 107 CrossRef PubMed Google Scholar

[40] Lourenco, S., Teixeira, V.H., Kalber, T., Jose, R.J., Floto, R.A., and Janes, S.M. (2015). Macrophage migration inhibitory factor-CXCR4 is the dominant chemotactic axis in human mesenchymal stem cell recruitment to tumors. J Immunol 194, 3463-3474. Google Scholar

[41] Lucius R., Sievers J.. Postnatal retinal ganglion cells in vitro: protection against reactive oxygen species (ROS)-induced axonal degeneration by cocultured astrocytes. Brain Res, 1996, 743: 56-62 CrossRef Google Scholar

[42] Quan L., Wu J., Lane L.A., Wang J., Lu Q., Gu Z., Wang Y.. Enhanced detection specificity and sensitivity of Alzheimer’s disease using amyloid-β-targeted quantum dots. Bioconjugate Chem, 2016, 27: 809-814 CrossRef PubMed Google Scholar

[43] Salatin S., Maleki Dizaj S., Yari Khosroushahi A.. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol Int, 2015, 39: 881-890 CrossRef PubMed Google Scholar

[44] Sandhir R., Yadav A., Sunkaria A., Singhal N.. Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions. NeuroChem Int, 2015, 89: 209-226 CrossRef PubMed Google Scholar

[45] Shi P., Li M., Ren J., Qu X.. Gold nanocage-based dual responsive “caged metal chelator” release system: noninvasive remote control with near infrared for potential treatment of Alzheimer’s disease. Adv Funct Mater, 2013, 23: 5412-5419 CrossRef Google Scholar

[46] Singh N., Savanur M.A., Srivastava S., D’Silva P., Mugesh G.. A redox modulatory Mn3 O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew Chem Int Ed, 2017, 56: 14267-14271 CrossRef PubMed Google Scholar

[47] Song Q., Huang M., Yao L., Wang X., Gu X., Chen J., Chen J., Huang J., Hu Q., Kang T., et al. Lipoprotein-based nanoparticles rescue the memory loss of mice with Alzheimer’s disease by accelerating the clearance of amyloid-beta. ACS Nano, 2014, 8: 2345-2359 CrossRef PubMed Google Scholar

[48] Soni S., Ruhela R.K., Medhi B.. Nanomedicine in central nervous system (CNS) disorders: a present and future prospective. Adv Pharm Bull, 2016, 6: 319-335 CrossRef PubMed Google Scholar

[49] Streich C., Akkari L., Decker C., Bormann J., Rehbock C., Müller-Schiffmann A., Niemeyer F.C., Nagel-Steger L., Willbold D., Sacca B., et al. Characterizing the effect of multivalent conjugates composed of Aβ-Specific ligands and metal nanoparticles on neurotoxic fibrillar aggregation. ACS Nano, 2016, 10: 7582-7597 CrossRef Google Scholar

[50] Tang H., Zhang H., Ye H., Zheng Y.. Receptor-mediated endocytosis of nanoparticles: roles of shapes, orientations, and rotations of nanoparticles. J Phys Chem B, 2017, 122: 171-180 CrossRef PubMed Google Scholar

[51] Tiwari S.K., Agarwal S., Seth B., Yadav A., Nair S., Bhatnagar P., Karmakar M., Kumari M., Chauhan L.K.S., Patel D.K., et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease modelvia canonical Wnt/β-catenin pathway. ACS Nano, 2014, 8: 76-103 CrossRef PubMed Google Scholar

[52] Urries I., Muñoz C., Gomez L., Marquina C., Sebastian V., Arruebo M., Santamaria J.. Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications. Nanoscale, 2014, 6: 9230-9240 CrossRef PubMed ADS Google Scholar

[53] Varela J.A., Dupuis J.P., Etchepare L., Espana A., Cognet L., Groc L.. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices. Nat Commun, 2016, 7: 10947 CrossRef PubMed ADS Google Scholar

[54] Vernekar A.A., Sinha D., Srivastava S., Paramasivam P.U., D’Silva P., Mugesh G.. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nat Commun, 2014, 5: 5301 CrossRef PubMed ADS Google Scholar

[55] Wang L.R., Xue X., Hu X.M., Wei M.Y., Zhang C.Q., Ge G.L., Liang X.J.. Structure-dependent mitochondrial dysfunction and hypoxia induced with single-walled carbon nanotubes. Small, 2014, 10: 2859-2869 CrossRef PubMed Google Scholar

[56] Xue X., Hall M.D., Zhang Q., Wang P.C., Gottesman M.M., Liang X.J.. Nanoscale drug delivery platforms overcome platinum-based resistance in cancer cells due to abnormal membrane protein trafficking. ACS Nano, 2013, 7: 10452-10464 CrossRef PubMed Google Scholar

[57] Xue X., Wang L.R., Sato Y., Jiang Y., Berg M., Yang D.S., Nixon R.A., Liang X.J.. Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a mouse model of Alzheimer’s disease. Nano Lett, 2014, 14: 5110-5117 CrossRef PubMed ADS Google Scholar

[58] Xue X., Yang J.Y., He Y., Wang L.R., Liu P., Yu L.S., Bi G.H., Zhu M.M., Liu Y.Y., Xiang R.W., et al. Aggregated single-walled carbon nanotubes attenuate the behavioural and neurochemical effects of methamphetamine in mice. Nat Nanotech, 2016, 11: 613-620 CrossRef PubMed ADS Google Scholar

[59] Yang C.C., Yang S.Y., Chieh J.J., Horng H.E., Hong C.Y., Yang H.C., Chen K.H., Shih B.Y., Chen T.F., Chiu M.J.. Biofunctionalized magnetic nanoparticles for specifically detecting biomarkers of Alzheimer’s disease in vitro. ACS Chem Neurosci, 2011, 2: 500-505 CrossRef PubMed Google Scholar

[60] Yin T., Xie W., Sun J., Yang L., Liu J.. Penetratin peptide-functionalized gold nanostars: enhanced BBB permeability and NIR photothermal treatment of Alzheimer’s disease using ultralow irradiance. ACS Appl Mater Interfaces, 2016, 8: 19291-19302 CrossRef Google Scholar

[61] Yang L., Zhang J., Wang C., Qin X., Yu Q., Zhou Y., Liu J.. Interaction between 8-hydroxyquinoline ruthenium(ii ) complexes and basic fibroblast growth factors (bFGF): inhibiting angiogenesis and tumor growth through ERK and AKT signaling pathways. Metallomics, 2014, 6: 518-531 CrossRef PubMed Google Scholar

[62] Yoo J., Lee E., Kim H.Y., Youn D.H., Jung J., Kim H., Chang Y., Lee W., Shin J., Baek S., et al. Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson’s disease therapy. Nat Nanotech, 2017, 12: 1006-1014 CrossRef PubMed ADS Google Scholar

[63] Zeng J.Y., Wang X.S., Zhang M.K., Li Z.H., Gong D., Pan P., Huang L., Cheng S.X., Cheng H., Zhang X.Z.. Universal porphyrinic metal-organic framework coating to various nanostructures for functional integration. ACS Appl Mater Interfaces, 2017, 9: 43143-43153 CrossRef Google Scholar

[64] Zhang R., Li Y., Hu B., Lu Z., Zhang J., Zhang X.. Traceable nanoparticle delivery of small interfering RNA and retinoic acid with temporally release ability to control neural stem cell differentiation for Alzheimer’s disease therapy. Adv Mater, 2016, 28: 6345-6352 CrossRef PubMed Google Scholar

[65] Zhang T.T., Li W., Meng G., Wang P., Liao W.. Strategies for transporting nanoparticles across the blood–brain barrier. Biomater Sci, 2016, 4: 219-229 CrossRef PubMed Google Scholar

[66] Zhang W., Wang Y., Sun X., Wang W., Chen L.. Mesoporous titania based yolk-shell nanoparticles as multifunctional theranostic platforms for SERS imaging and chemo-photothermal treatment. Nanoscale, 2014, 6: 14514-14522 CrossRef PubMed ADS Google Scholar

[67] Zhang Y., Wang Z., Li X., Wang L., Yin M., Wang L., Chen N., Fan C., Song H.. Dietary iron oxide nanoparticles delay aging and ameliorate neurodegeneration inDrosophila. Adv Mater, 2016, 28: 1387-1393 CrossRef PubMed Google Scholar

[68] Zhao S., Zhang S., Ma J., Fan L., Yin C., Lin G., Li Q.. Double loaded self-decomposable SiO2 nanoparticles for sustained drug release. Nanoscale, 2015, 7: 16389-16398 CrossRef PubMed ADS Google Scholar

[69] Zhu L., Zhao Z., Cheng P., He Z., Cheng Z., Peng J., Wang H., Wang C., Yang Y., Hu Z.. Antibody-mimetic peptoid nanosheet for label-free serum-based diagnosis of Alzheimer’s disease. Adv Mater, 2017, 29: 1700057 CrossRef PubMed Google Scholar

  • Figure 1

    (Color online) The diagnosis and treatment effects of Congo red/rutin-MNPs in Alzheimer’s disease. A, The preparation of Congo red/rutin-MNPs. B, Schematic interpretation of Congo red/rutin-MNPs in vivo. After the penetration of Congo red/rutin-MNPs through the BBB, they can be specifically detected through amyloid plaques and serve as antioxidants preventing neuronal loss due to oxidative stress (Hu et al., 2015).

  • Figure 2

    (Color online) Cur-PLGA-NPs reverse learning and memory deficits in Alzheimer’s disease. A and B, Photomicrographs showing immunostaining of BrdU cells in the hippocampus. After one week of Aβ protein stereotaxic injection, rats were treated with BC and Cur-PLGA-NPs. C and D, Immunofluorescence analysis of matured neurons co-labeled with β-tubulin (red: marker for mature neurons) and BrdU (green) in the hippocampus. Scale bar, 20 μm. E, Learning and memory defects were recovered in the Cur-PLGA-NP-treated group compared with that in control rats. Values are expressed as mean±SEM (n=6 rats/group). *, P<0.05 (Tiwari et al., 2014).

  • Figure 3

    (Color online) Schematic illustration of nanoparticles applied for disorders of the central nervous system (Li et al., 2014).


Contact and support