logo

SCIENCE CHINA Life Sciences, Volume 61 , Issue 4 : 427-435(2018) https://doi.org/10.1007/s11427-017-9264-2

Morphology of living cells cultured on nanowire arrays with varying nanowire densities and diameters

More info
  • ReceivedNov 20, 2017
  • AcceptedDec 25, 2017
  • PublishedApr 2, 2018

Abstract


Funded by

the Swedish Research Council(VR)

NanoLund

The Crafoord Foundation

the China Scholarship Council(CSC)

by a donation from Carolina LePrince with the “Kalenderflickorna” and associated sponsors. The nanowire array fabrication was performed at Lund Nano Lab.


Acknowledgment

This work was supported by the Swedish Research Council (VR), NanoLund, the Crafoord Foundation, the China Scholarship Council (CSC) and by a Donation from Carolina LePrince with the “Kalenderflickorna” and Associated Sponsors. The nanowire array fabrication was performed at Lund Nano Lab.


Interest statement

The author(s) declare that they have no conflict of interest.


References

[1] Bonde S., Berthing T., Madsen M.H., Andersen T.K., Buch-Månson N., Guo L., Li X., Badique F., Anselme K., Nygård J., et al. Tuning InAs nanowire density for HEK293 cell viability, adhesion, and morphology: perspectives for nanowire-based biosensors. ACS Appl Mater Interf, 2013, 5: 10510-10519 CrossRef PubMed Google Scholar

[2] Bonde S., Buch-Månson N., Rostgaard K.R., Andersen T.K., Berthing T., Martinez K.L.. Exploring arrays of vertical one-dimensional nanostructures for cellular investigations. Nanotechnology, 2014, 25: 362001 CrossRef PubMed ADS Google Scholar

[3] Buch-Månson N., Bonde S., Bolinsson J., Berthing T., Nygård J., Martinez K.L.. Towards a better prediction of cell settling on nanostructure arrays-simple means to complicated ends. Adv Funct Mater, 2015, 25: 3246-3255 CrossRef Google Scholar

[4] Buch-Månson, N., Kang, D.-H., Kim, D., Lee, K.E., Yoon, M.-H., and Martinez, K.L. (2017). Mapping cell behavior across a wide range of vertical silicon nanocolumn densities. Nanoscale 9, 5517–5527. Google Scholar

[5] Dabkowska A.P., Niman C.S., Piret G., Persson H., Wacklin H.P., Linke H., Prinz C.N., Nylander T.. Fluid and highly curved model membranes on vertical nanowire arrays. Nano Lett, 2014, 14: 4286-4292 CrossRef PubMed ADS Google Scholar

[6] Elnathan R., Kwiat M., Patolsky F., Voelcker N.H.. Engineering vertically aligned semiconductor nanowire arrays for applications in the life sciences. Nano Today, 2014, 9: 172-196 CrossRef Google Scholar

[7] Hällström W., Mårtensson T., Prinz C., Gustavsson P., Montelius L., Samuelson L., Kanje M.. Gallium phosphide nanowires as a substrate for cultured neurons. Nano Lett, 2007, 7: 2960-2965 CrossRef PubMed ADS Google Scholar

[8] Hällström W., Lexholm M., Suyatin D.B., Hammarin G., Hessman D., Samuelson L., Montelius L., Kanje M., Prinz C.N.. Fifteen-Piconewton force detection from neural growth cones using nanowire arrays. Nano Lett, 2010, 10: 782-787 CrossRef PubMed ADS Google Scholar

[9] Hammarin G., Persson H., Dabkowska A.P., Prinz C.N.. Enhanced laminin adsorption on nanowires compared to flat surfaces. Colloids Surfs B-Biointerf, 2014, 122: 85-89 CrossRef PubMed Google Scholar

[10] Hjort M., Bauer M., Gunnarsson S., Mårsell E., Zakharov A.A., Karlsson G., Sanfins E., Prinz C.N., Wallenberg R., Cedervall T., et al. Electron microscopy imaging of proteins on gallium phosphide semiconductor nanowires. Nanoscale, 2016, 8: 3936-3943 CrossRef PubMed ADS Google Scholar

[11] Hu W., Crouch A.S., Miller D., Aryal M., Luebke K.J.. Inhibited cell spreading on polystyrene nanopillars fabricated by nanoimprinting and in situ elongation. Nanotechnology, 2010, 21: 385301 CrossRef PubMed ADS Google Scholar

[12] Li Z., Persson H., Adolfsson K., Abariute L., Borgström M.T., Hessman D., Åström K., Oredsson S., Prinz C.N.. Cellular traction forces: a useful parameter in cancer research. Nanoscale, 2017, 9: 19039-19044 CrossRef PubMed Google Scholar

[13] Persson H., Beech J.P., Samuelson L., Oredsson S., Prinz C.N., Tegenfeldt J.O.. Vertical oxide nanotubes connected by subsurface microchannels. Nano Res, 2012, 5: 190-198 CrossRef Google Scholar

[14] Persson H., Købler C., Mølhave K., Samuelson L., Tegenfeldt J.O., Oredsson S., Prinz C.N.. Fibroblasts cultured on nanowires exhibit low motility, impaired cell division, and DNA damage. Small, 2013, 9: 4006-4016 CrossRef PubMed Google Scholar

[15] Persson H., Li Z., Tegenfeldt J.O., Oredsson S., Prinz C.N.. From immobilized cells to motile cells on a bed-of-nails: effects of vertical nanowire array density on cell behaviour. Sci Rep, 2015, 5: 18535 CrossRef PubMed ADS Google Scholar

[16] Piret G., Perez M.T., Prinz C.N.. Neurite outgrowth and synaptophysin expression of postnatal CNS neurons on GaP nanowire arrays in long-term retinal cell culture. Biomaterials, 2013, 34: 875-887 CrossRef PubMed Google Scholar

[17] Piret G., Perez M.T., Prinz C.N.. Support of neuronal growth over Glial growth and guidance of optic nerve axons by vertical nanowire arrays. ACS Appl Mater Interf, 2015, 7: 18944-18948 CrossRef Google Scholar

[18] Prinz C., Hällström W., Mårtensson T., Samuelson L., Montelius L., Kanje M.. Axonal guidance on patterned free-standing nanowire surfaces. Nanotechnology, 2008, 19: 345101 CrossRef PubMed ADS Google Scholar

[19] Prinz C.N.. Interactions between semiconductor nanowires and living cells. J Phys Condens Matter, 2015, 27: 233103 CrossRef PubMed ADS Google Scholar

[20] Shalek A.K., Robinson J.T., Karp E.S., Lee J.S., Ahn D.R., Yoon M.H., Sutton A., Jorgolli M., Gertner R.S., Gujral T.S., et al. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc Natl Acad Sci USA, 2010, 107: 1870-1875 CrossRef PubMed ADS Google Scholar

[21] Sköld N., Hällström W., Persson H., Montelius L., Kanje M., Samuelson L., Prinz C.N., Tegenfeldt J.O.. Nanofluidics in hollow nanowires. Nanotechnology, 2010, 21: 155301 CrossRef PubMed ADS Google Scholar

[22] Suyatin D.B., Hällström W., Samuelson L., Montelius L., Prinz C.N., Kanje M.. Gallium phosphide nanowire arrays and their possible application in cellular force investigations. J Vac Sci Technol B, 2009, 27: 3092-3094 CrossRef ADS Google Scholar

[23] Taskin M.B., Sasso L., Dimaki M., Svendsen W.E., Castillo-León J.. Combined cell culture-biosensing platform using vertically aligned patterned peptide nanofibers for cellular studies. ACS Appl Mater Interf, 2013, 5: 3323-3328 CrossRef PubMed Google Scholar

[24] VanDersarl J.J., Xu A.M., Melosh N.A.. Nanostraws for direct fluidic intracellular access. Nano Lett, 2012, 12: 3881-3886 CrossRef PubMed ADS Google Scholar

  • Figure 1

    Scanning electron microscopy images of the nanowire substrates with 40 nm diameter, low density nanowires (A), 40 nm diameter, medium density nanowires (B), 40 nm diameter, high density nanowires (C), 60 nm diameter, low density nanowires (D), 60 nm diameter, medium density nanowires (E), 60 nm diameter, high density nanowires (F), 80 nm diameter, low density nanowires (G), 80 nm diameter, medium density nanowires (H), and 80 nm diameter, high density nanowires (I). Scale bars, 2 µm, tilt 30°.

  • Figure 2

    MCF7 cells on the various nanowire arrays (40, 60 and 80 nm nanowire diameters; low, medium and high density nanowire arrays) and control flat glass and GaP substrates. Actin is labeled green using Alexa Fluor 488-Phalloidin. DNA is labeled blue using bisbenzimide. Scale bar, 20 µm, for all panels.

  • Figure 3

    MCF10A cells on the various nanowire arrays (40, 60 and 80 nm nanowire diameters; low, medium and high density nanowire arrays) and control flat glass and GaP substrates. Actin is labeled green using Alexa Fluor 488-Phalloidin. DNA is labeled blue using bisbenzimide. Scale bar, 20 µm, for all panels.

  • Figure 4

    MCF7 and MCF10A cell area, perimeter-to-area ratio and aspect ratio when seeded on the different nanowire arrays (blue, 40 nm nanowire diameter; orange, 60 nm nanowire diameter and yellow, 80 nm nanowire diameter; low, medium and high density nanowire arrays) and control flat glass and GaP substrates. Red crosses indicate outliers. Horizontal lines, P<0.001, multiway analysis of variance (ANOVA); o, P<0.001 between flat controls and all the nanowire groups. *, P<0.001 between flat GaP and all the other groups.

  • Figure 5

    Vinculin in MCF7 cells seeded on the various nanowire arrays (40, 60 and 80 nm nanowire diameters; low, medium and high density nanowire arrays) and control flat glass and GaP substrates. Scale bar, 20 µm, for all panels.

  • Figure 6

    SEM images of MCF7 cells on the various substrates (40, 60 and 80 nm nanowire diameters; low, medium and high density nanowire arrays) and control flat glass and GaP substrates. Scale bars, 5 µm, stage tilt, 30°.

  • Figure 7

    Vinculin in MCF10A cells seeded on the various nanowire arrays (40, 60 and 80 nm nanowire diameters; low, medium and high density nanowire arrays) and control flat glass and GaP substrates. Scale bar, 20 µm, for all panels.

  • Figure 8

    SEM images of MCF10A cells on the various substrates (40, 60 and 80 nm nanowire diameters; low, medium and high density nanowire arrays) and control flat glass and GaP substrates. Scale bars, 5 µm, stage tilt: 30°.

  • Table 1   Geometry of nanowire arrays used in the present study, determined using SEM

    Nanowire diameter (nm)

    Nanowire length(µm)

    Nanowire density (µm−2)

    46±3

    3.6±0.2

    0.08±0.03

    45±4

    3.1±0.2

    2.1±0.3

    42±4

    3.6±0.2

    5.6±0.5

    65±4

    3.6±0.2

    0.08±0.04

    67±5

    3.4±0.2

    2.0±0.2

    64±4

    3.2±0.2

    4.8±0.2

    87±5

    3.2±0.3

    0.04±0.02

    85±4

    3.3±0.1

    1.3±0.2

    80±3

    3.2±0.1

    5.5±0.4

  • Table 2   Proportion of cells (%) exhibiting focal adhesions with an aspect ratio >1 (longer than on the different substrates

    MCF7 cells

    MCF10A cells

    40 nm

    60 nm

    80 nm

    40 nm

    60 nm

    80 nm

    Low

    93.7

    78.6

    58.4

    80.4

    51.0

    75.8

    Medium

    58.1

    10.5

    42.1

    91.2

    36.9

    50.6

    High

    16.7

    0

    2.1

    21.2

    28.6

    12.5

    Glass

    78.1

    70.1

     

    Flat GaP

    96.7

    85.3

     

qqqq

Contact and support