logo

Oxygen-promoted synthesis of armchair graphene nanoribbons on Cu(111)

More info
  • ReceivedJan 19, 2021
  • AcceptedFeb 22, 2021
  • PublishedMar 1, 2021

Abstract


Funded by

the Ministry of Science and Technology(2017YFA0205002)

the National Natural Science Foundation of China(21790053,51821002)

and the Collaborative Innovation Center of Suzhou Nano Science & Technology. F. R. is also supported by NSERC through individual Discovery Grants as well as by an FRQNT team grant. F. R. is grateful to the Canada Research Chair program for funding and partial salary support.


Acknowledgment

This work was supported by the Ministry of Science and Technology (2017YFA0205002), the National Natural Science Foundation of China (21790053, 51821002), and the Collaborative Innovation Center of Suzhou Nano Science & Technology. F. R. is also supported by NSERC through individual Discovery Grants as well as by an FRQNT team grant. F. R. is grateful to the Canada Research Chair program for funding and partial salary support.


Interest statement

The authors declare no conflict of interest.


Supplement

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R. Nature, 2010, 466: 470-473 CrossRef PubMed ADS Google Scholar

[2] Zhang H, Chi L. Adv Mater, 2016, 28: 10492-10498 CrossRef PubMed Google Scholar

[3] Wang XY, Yao X, Müllen K. Sci China Chem, 2019, 62: 1099-1144 CrossRef Google Scholar

[4] Zheng C, Zhu J, Yang C, Lu C, Chen Z, Zhuang X. Sci China Chem, 2019, 62: 1145-1193 CrossRef Google Scholar

[5] Cui D, Perepichka DF, MacLeod JM, Rosei F. Chem Soc Rev, 2020, 49: 2020-2038 CrossRef PubMed Google Scholar

[6] Galeotti G, De Marchi F, Hamzehpoor E, MacLean O, Rajeswara Rao M, Chen Y, Besteiro LV, Dettmann D, Ferrari L, Frezza F, Sheverdyaeva PM, Liu R, Kundu AK, Moras P, Ebrahimi M, Gallagher MC, Rosei F, Perepichka DF, Contini G. Nat Mater, 2020, 19: 874-880 CrossRef PubMed Google Scholar

[7] Stolz S, Di Giovannantonio M, Urgel JI, Sun Q, Kinikar A, Borin Barin G, Bommert M, Fasel R, Widmer R. Angew Chem Int Ed, 2020, 59: 14106-14110 CrossRef PubMed Google Scholar

[8] Yu M, Chen C, Liu Q, Mattioli C, Sang H, Shi G, Huang W, Shen K, Li Z, Ding P, Guan P, Wang S, Sun Y, Hu J, Gourdon A, Kantorovich L, Besenbacher F, Chen M, Song F, Rosei F. Nat Chem, 2020, 12: 1035-1041 CrossRef PubMed ADS Google Scholar

[9] Yang L, Park CH, Son YW, Cohen ML, Louie SG. Phys Rev Lett, 2007, 99: 186801 CrossRef PubMed ADS Google Scholar

[10] Sakaguchi H, Kawagoe Y, Hirano Y, Iruka T, Yano M, Nakae T. Adv Mater, 2014, 26: 4134-4138 CrossRef PubMed Google Scholar

[11] Talirz L, Ruffieux P, Fasel R. Adv Mater, 2016, 28: 6222-6231 CrossRef PubMed Google Scholar

[12] Vasseur G, Fagot-Revurat Y, Sicot M, Kierren B, Moreau L, Malterre D, Cardenas L, Galeotti G, Lipton-Duffin J, Rosei F, Di Giovannantonio M, Contini G, Le Fèvre P, Bertran F, Liang L, Meunier V, Perepichka DF. Nat Commun, 2016, 7: 10235 CrossRef PubMed ADS arXiv Google Scholar

[13] Sakaguchi H, Song S, Kojima T, Nakae T. Nat Chem, 2017, 9: 57-63 CrossRef PubMed ADS Google Scholar

[14] Li X, Wang X, Zhang L, Lee S, Dai H. Science, 2008, 319: 1229-1232 CrossRef PubMed ADS Google Scholar

[15] Jiao L, Zhang L, Wang X, Diankov G, Dai H. Nature, 2009, 458: 877-880 CrossRef PubMed ADS Google Scholar

[16] Chen YC, de Oteyza DG, Pedramrazi Z, Chen C, Fischer FR, Crommie MF. ACS Nano, 2013, 7: 6123-6128 CrossRef PubMed Google Scholar

[17] Basagni A, Sedona F, Pignedoli CA, Cattelan M, Nicolas L, Casarin M, Sambi M. J Am Chem Soc, 2015, 137: 1802-1808 CrossRef PubMed Google Scholar

[18] Zhang H, Lin H, Sun K, Chen L, Zagranyarski Y, Aghdassi N, Duhm S, Li Q, Zhong D, Li Y, Müllen K, Fuchs H, Chi L. J Am Chem Soc, 2015, 137: 4022-4025 CrossRef PubMed Google Scholar

[19] Talirz L, Söde H, Dumslaff T, Wang S, Sanchez-Valencia JR, Liu J, Shinde P, Pignedoli CA, Liang L, Meunier V, Plumb NC, Shi M, Feng X, Narita A, Müllen K, Fasel R, Ruffieux P. ACS Nano, 2017, 11: 1380-1388 CrossRef PubMed Google Scholar

[20] Sun K, Ji P, Zhang J, Wang J, Li X, Xu X, Zhang H, Chi L. Small, 2019, 15: 1804526 CrossRef PubMed Google Scholar

[21] Ruffieux P, Wang S, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli CA, Passerone D, Dumslaff T, Feng X, Müllen K, Fasel R. Nature, 2016, 531: 489-492 CrossRef PubMed ADS arXiv Google Scholar

[22] Rizzo DJ, Veber G, Cao T, Bronner C, Chen T, Zhao F, Rodriguez H, Louie SG, Crommie MF, Fischer FR. Nature, 2018, 560: 204-208 CrossRef PubMed ADS arXiv Google Scholar

[23] Han P, Akagi K, Federici Canova F, Mutoh H, Shiraki S, Iwaya K, Weiss PS, Asao N, Hitosugi T. ACS Nano, 2014, 8: 9181-9187 CrossRef PubMed Google Scholar

[24] Sánchez-Sánchez C, Dienel T, Deniz O, Ruffieux P, Berger R, Feng X, Müllen K, Fasel R. ACS Nano, 2016, 10: 8006-8011 CrossRef PubMed Google Scholar

[25] Pawlak R, Liu X, Ninova S, D'Astolfo P, Drechsel C, Sangtarash S, Häner R, Decurtins S, Sadeghi H, Lambert CJ, Aschauer U, Liu SX, Meyer E. J Am Chem Soc, 2020, 142: 12568-12573 CrossRef PubMed Google Scholar

[26] Han P, Akagi K, Federici Canova F, Shimizu R, Oguchi H, Shiraki S, Weiss PS, Asao N, Hitosugi T. ACS Nano, 2015, 9: 12035-12044 CrossRef PubMed Google Scholar

[27] Sun K, Ji P, Zhang H, Niu K, Li L, Chen A, Li Q, Müllen K, Chi L. Faraday Discuss, 2017, 204: 297-305 CrossRef PubMed ADS Google Scholar

[28] Rastgoo-Lahrood A, Björk J, Lischka M, Eichhorn J, Kloft S, Fritton M, Strunskus T, Samanta D, Schmittel M, Heckl WM, Lackinger M. Angew Chem Int Ed, 2016, 55: 7650-7654 CrossRef PubMed Google Scholar

[29] Rodríguez-Fernández J, Schmidt SB, Lauritsen JV. Chem Commun, 2018, 54: 3621-3624 CrossRef PubMed Google Scholar

[30] Abyazisani M, MacLeod JM, Lipton-Duffin J. ACS Nano, 2019, 13: 9270-9278 CrossRef PubMed Google Scholar

[31] Sánchez-Sánchez C, Martínez JI, Ruiz Del Arbol N, Ruffieux P, Fasel R, López MF, de Andres PL, Martín-Gago JÁ. J Am Chem Soc, 2019, 141: 3550-3557 CrossRef PubMed Google Scholar

[32] Zuzak R, Jančařík A, Gourdon A, Szymonski M, Godlewski S. ACS Nano, 2020, 14: 13316-13323 CrossRef PubMed Google Scholar

[33] Ji P, Galeotti G, De Marchi F, Cui D, Sun K, Zhang H, Contini G, Ebrahimi M, MacLean O, Rosei F, Chi L. Small, 2020, 16: 2002393 CrossRef PubMed Google Scholar

[34] Niu T, Jiang Z, Zhu Y, Zhou G, van Spronsen MA, Tenney SA, Boscoboinik JA, Stacchiola D. J Phys Chem B, 2017, 122: 855-863 CrossRef PubMed Google Scholar

[35] Kresse G, Hafner J. Phys Rev B, 1993, 47: 558-561 CrossRef PubMed ADS Google Scholar

[36] Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169-11186 CrossRef PubMed ADS Google Scholar

[37] Perdew JP, Ernzerhof M, Burke K. J Chem Phys, 1996, 105: 9982-9985 CrossRef ADS Google Scholar

[38] Blöchl PE. Phys Rev B, 1994, 50: 17953-17979 CrossRef PubMed ADS Google Scholar

[39] Kresse G, Joubert D. Phys Rev B, 1999, 59: 1758-1775 CrossRef ADS Google Scholar

[40] Grimme S, Antony J, Ehrlich S, Krieg H. J Chem Phys, 2010, 132: 154104 CrossRef PubMed ADS Google Scholar

[41] Humphrey W, Dalke A, Schulten K. J Mol Graphics, 1996, 14: 33-38 CrossRef Google Scholar

[42] Tersoff J, Hamann DR. Phys Rev B, 1985, 31: 805-813 CrossRef PubMed ADS Google Scholar

[43] Vanpoucke DEP, Brocks G. Phys Rev B, 2008, 77: 241308 CrossRef ADS arXiv Google Scholar

[44] Wang W, Shi X, Wang S, Van Hove MA, Lin N. J Am Chem Soc, 2011, 133: 13264-13267 CrossRef PubMed Google Scholar

[45] Jones RG, Kadodwala M. Surf Sci, 1997, 370: L219-L225 CrossRef Google Scholar

[46] Jensen F, Besenbacher F, Lægsgaard E, Stensgaard I. Surf Sci, 1991, 259: L774-L780 CrossRef Google Scholar

[47] Chen M, Xiao J, Steinrück HP, Wang S, Wang W, Lin N, Hieringer W, Gottfried JM. J Phys Chem C, 2014, 118: 6820-6830 CrossRef Google Scholar

[48] Batra A, Cvetko D, Kladnik G, Adak O, Cardoso C, Ferretti A, Prezzi D, Molinari E, Morgante A, Venkataraman L. Chem Sci, 2014, 5: 4419-4423 CrossRef Google Scholar

[49] Stadnichenko AI, Sorokin AM, Boronin AI. J Struct Chem, 2008, 49: 341-347 CrossRef Google Scholar

[50] Carlisle CI, Fujimoto T, Sim WS, King DA. Surf Sci, 2000, 470: 15-31 CrossRef Google Scholar

  • Figure 1

    LT STM images (T = 4.6 K) of the synthesis of 3p-AGNRs on Cu(111). (a) STM image of OM chains formed by the dehalogenation of DBTP. Yellow circles and blue ellipses indicate copper atoms and terphenylene segments in the magnified image in the inset (Vb = 1 V, It = 0.1 nA; inset: Vb = 1 V, It = 0.1 nA). (b) 3-AGNRs synthesized after annealing at 513 K (Vb = 1 V, It = 0.1 nA). (c) Lateral fusion between 3-AGNRs occurring after annealing at 593 K, contributing to the formation of 6-AGNRs (Vb = 1 V, It = 1 nA). (d) Co-adsorbed 3-AGNRs and wider AGNRs after annealing at 633 K (Vb = −0.1 V, It = 1 nA) (color online).

  • Scheme 1

    Synthesis of 3p-AGNRs on the pure Cu(111) and partially oxidized Cu(111). Bonds formed during lateral fusion are shown in red (color online).

  • Figure 2

    (a, b) Calculated structures for the initial self-assembly of 3-AGNRs and Br atoms (a) and after intercalation of one Br atom (b). (c, d) Simulated STM images for the structures above, showing that the intercalated Br causes the upper phenylene to appear bright. Black and white rectangles indicate the supercell and red arrows show the position of the intercalated Br (atom colors: Br: dark red, C: black, H: white, Cu: light brown) (color online).

  • Figure 3

    LT STM images (T = 4.6 K) of 3p-AGNRs synthesized on Cu (111) with the introduction of O2. (a) Image of 3-AGNRs formed after annealing OM chains at 513 K (Vb = −1 V, It = 0.1 nA). Inset is a high-resolution image of 3-AGNRs (Vb = −0.05 V, It = 1 nA). (b) Dose 60 Langmuir (L) of O2 when sample is held at 403 K (Dashed blue lines mark the oxidized area; Vb = −1 V, It = 0.1 nA). (c) Brighter features appear after annealing at 453 K lasting 15 min (Vb = −1 V, It = 0.1 nA). Inset is a magnified image (Vb = −0.1 V, It = 0.1 nA). (d) 3p-AGNRs synthesized after annealing the sample at 453 K lasting 60 min (Vb = −0.1 V, It = 1 nA). Inset is a magnified image (Vb = −0.1 V, It = 1 nA) (color online).

  • Figure 4

    (a) C 1s XPS spectra of the synthesis of 3p-AGNRs on Cu(111) at various temperatures. (b, c) C 1s and O 1s XPS spectra of the synthesis of 3p-AGNRs on Cu(111) with oxygen introduced after the formation of 3-AGNR (color online).