logo

Organocatalytic stereoselective cationic polymerization of vinyl ethers by employing a confined brønsted acid as the catalyst

More info
  • ReceivedOct 4, 2021
  • AcceptedOct 26, 2021
  • PublishedNov 24, 2021

Abstract


Funded by

the Recruitment Program of Global Experts

Beijing National Laboratory for Molecular Sciences(BNLMS201913)

and Fuzhou University.


Acknowledgment

This work was supported by the Recruitment Program of Global Experts, Beijing National Laboratory for Molecular Sciences (BNLMS201913), and Fuzhou University.


Interest statement

The authors declare no conflict of interest.


Contributions statement

These authors contributed equally to this work.


Supplement

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Worch JC, Prydderch H, Jimaja S, Bexis P, Becker ML, Dove AP. Nat Rev Chem, 2019, 3: 514-535 CrossRef Google Scholar

[2] Busico V. Giulio Natta and the Development of Stereoselective Propene Polymerization. In: Kaminsky W, Eds. Polyolefins: 50 years after Ziegler and Natta I. Advances in Polymer Science, Vol 257. Berlin, Heidelberg: Springer, 2013. 37–58. Google Scholar

[3] de Derosa C, Auriemma F. Prog Polym Sci, 2006, 31: 145-237 CrossRef Google Scholar

[4] Fishbein L, Crowe BF. Makromol Chem, 1961, 48: 221-228 CrossRef Google Scholar

[5] Teator AJ, Leibfarth FA. Science, 2019, 363: 1439-1443 CrossRef PubMed ADS Google Scholar

[6] Teator AJ, Varner TP, Knutson PC, Sorensen CC, Leibfarth FA. ACS Macro Lett, 2020, 9: 1638-1654 CrossRef Google Scholar

[7] Aoshima S, Kanaoka S. Chem Rev, 2009, 109: 5245-5287 CrossRef PubMed Google Scholar

[8] Sawamoto M. Prog Polym Sci, 1991, 16: 111-172 CrossRef Google Scholar

[9] Coates GW. Chem Rev, 2000, 100: 1223-1252 CrossRef PubMed Google Scholar

[10] Chen EYX. Chem Rev, 2009, 109: 5157-5214 CrossRef PubMed Google Scholar

[11] Wang XY, Sun XL, Wang F, Tang Y. ACS Catal, 2017, 7: 4692-4696 CrossRef Google Scholar

[12] Aoshima S, Ito Y, Kobayashi E. Polym J, 1993, 25: 1161-1168 CrossRef Google Scholar

[13] Kamigaito M, Maeda Y, Sawamoto M, Higashimura T. Macromolecules, 1993, 26: 1643-1649 CrossRef ADS Google Scholar

[14] Ouchi M, Kamigaito M, Sawamoto M. Macromolecules, 1999, 32: 6407-6411 CrossRef ADS Google Scholar

[15] Ouchi M, Kamigaito M, Sawamoto M. J Polym Sci Polym Chem, 2001, 39: 1060-1066 CrossRef Google Scholar

[16] Ouchi M, Sueoka M, Kamigaito M, Sawamoto M. J Polym Sci Polym Chem, 2001, 39: 1067-1074 CrossRef Google Scholar

[17] Kawaguchi T, Sanda F, Masuda T. J Polym Sci Polym Chem, 2002, 40: 3938-3943 CrossRef ADS Google Scholar

[18] Sudhakar P, Vijayakrishna K. ChemCatChem, 2010, 2: 649-652 CrossRef Google Scholar

[19] Kanazawa A, Kanaoka S, Aoshima S. J Polym Sci Polym Chem, 2010, 48: 3702-3708 CrossRef ADS Google Scholar

[20] Teator AJ, Varner TP, Jacky PE, Sheyko KA, Leibfarth FA. ACS Macro Lett, 2019, 8: 1559-1563 CrossRef Google Scholar

[21] Watanabe H, Yamamoto T, Kanazawa A, Aoshima S. Polym Chem, 2020, 11: 3398-3403 CrossRef Google Scholar

[22] Varner TP, Teator AJ, Reddi Y, Jacky PE, Cramer CJ, Leibfarth FA. J Am Chem Soc, 2020, 142: 17175-17186 CrossRef PubMed Google Scholar

[23] Uchiyama M, Satoh K, Kamigaito M. Giant, 2021, 5: 100047 CrossRef Google Scholar

[24] Shanmugam S, Boyer C. Science, 2016, 352: 1053-1054 CrossRef PubMed ADS Google Scholar

[25] Albertsson AC, Varma IK. Biomacromolecules, 2003, 4: 1466-1486 CrossRef PubMed Google Scholar

[26] Sugihara S, Tanabe Y, Kitagawa M, Ikeda I. J Polym Sci Polym Chem, 2008, 46: 1913-1918 CrossRef ADS Google Scholar

[27] Uchiyama M, Satoh K, Kamigaito M. Angew Chem Int Ed, 2015, 54: 1924-1928 CrossRef PubMed Google Scholar

[28] Sugihara S, Konegawa N, Maeda Y. Macromolecules, 2015, 48: 5120-5131 CrossRef ADS Google Scholar

[29] Song J, Xu J, Tang D. J Polym Sci Part A-Polym Chem, 2016, 54: 1373-1377 CrossRef ADS Google Scholar

[30] Kottisch V, Jermaks J, Mak JY, Woltornist RA, Lambert TH, Fors BP. Angew Chem Int Ed, 2021, 60: 4535-4539 CrossRef PubMed Google Scholar

[31] Liao S, Čorić I, Wang Q, List B. J Am Chem Soc, 2012, 134: 10765-10768 CrossRef PubMed Google Scholar

[32] Schreyer L, Properzi R, List B. Angew Chem Int Ed, 2019, 58: 12761-12777 CrossRef PubMed Google Scholar

[33] Čorić I, List B. Nature, 2012, 483: 315-319 CrossRef PubMed ADS Google Scholar

[34] Kaib PSJ, Schreyer L, Lee S, Properzi R, List B. Angew Chem Int Ed, 2016, 55: 13200-13203 CrossRef PubMed Google Scholar

[35] Xie Y, Cheng GJ, Lee S, Kaib PSJ, Thiel W, List B. J Am Chem Soc, 2016, 138: 14538-14541 CrossRef PubMed Google Scholar

[36] Liu L, Kim H, Xie Y, Farès C, Kaib PSJ, Goddard R, List B. J Am Chem Soc, 2017, 139: 13656-13659 CrossRef PubMed Google Scholar

[37] Lee S, Kaib PSJ, List B. J Am Chem Soc, 2017, 139: 2156-2159 CrossRef PubMed Google Scholar

[38] Schreyer L, Kaib PSJ, Wakchaure VN, Obradors C, Properzi R, Lee S, List B. Science, 2018, 362: 216-219 CrossRef PubMed ADS Google Scholar

[39] Tsuji N, Kennemur JL, Buyck T, Lee S, Prévost S, Kaib PSJ, Bykov D, Farès C, List B. Science, 2018, 359: 1501-1505 CrossRef PubMed ADS Google Scholar

[40] Ouyang J, Kennemur JL, De CK, Farès C, List B. J Am Chem Soc, 2019, 141: 3414-3418 CrossRef PubMed Google Scholar

[41] Ghosh S, Das S, De CK, Yepes D, Neese F, Bistoni G, Leutzsch M, List B. Angew Chem Int Ed, 2020, 59: 12347-12351 CrossRef PubMed Google Scholar

[42] Zhang X, Jiang Y, Ma Q, Hu S, Wang Q, Liao S. Eur Polym J, 2020, 123: 109449 CrossRef Google Scholar

[43] Mitschke B, Turberg M, List B. Chem, 2020, 6: 2515-2532 CrossRef Google Scholar

[44] Schwengers SA, De CK, Grossmann O, Grimm JAA, Sadlowski NR, Gerosa GG, List B. J Am Chem Soc, 2021, 143: 14835-14844 CrossRef PubMed Google Scholar

[45] Mahlau M, List B. Angew Chem Int Ed, 2013, 52: 518-533 CrossRef PubMed Google Scholar

[46] Brak K, Jacobsen EN. Angew Chem Int Ed, 2013, 52: 534-561 CrossRef PubMed Google Scholar

[47] Phipps RJ, Hamilton GL, Toste FD. Nat Chem, 2012, 4: 603-614 CrossRef PubMed ADS Google Scholar

[48] Liao S, List B. Angew Chem Int Ed, 2010, 49: 628-631 CrossRef PubMed Google Scholar

[49] Merten C, Pollok CH, Liao S, List B. Angew Chem Int Ed, 2015, 54: 8841-8845 CrossRef PubMed Google Scholar

[50] A patent (CN 202110033389.X) has been filed on this stereoselective polymerization method employing chiral confined Brønsted acids as the catalyst on 2021-01-12. This manuscript was first published as a preprint on ChemRxiv (Cambridge: Cambridge Open Engage, 2021), doi: 10.33774/chemrxiv-2021-qlpbp on 2021-10-04. Google Scholar

[51] Knutson PC, Teator AJ, Varner TP, Kozuszek CT, Jacky PE, Leibfarth FA. J Am Chem Soc, 2021, 143: 16388-16393 CrossRef PubMed Google Scholar

  • Figure 1

    (a) Stereoselective polymerization of vinyl ethers. (b) The development of catalytic systems: metal-based Lewis catalysts (previous work) and metal-free confined acid catalysts (this work) (color online).

  • Figure 2

    (a) DSC scan curves; (b) photo of the poly(IBVE) product (color online).

  • Figure 3

    In situ chain-end functionalization and NMR characterization. Functionalized polymer with 2a: Mn,GPC19.3 kg/mol,Mn,NMR20.9 kg/mol,Mn,GPC/Mn,NMR = 92%; with 2b: Mn,GPC11.1 kg/mol,Mn,NMR12.2 kg/mol,Mn,GPC/Mn,NMR = 91% (color online).

  • Table 1   Optimization of confined Brønsted acid for the stereoselective cationic polymerization of IBVE a)

    Entry

    CAT

    Conv. (%)

    Mn (kg/mol) b)

    Ð b)

    m c)

    1

    Tf2NH

    >99

    13.0

    1.62

    60%

    2

    IDPi 1a

    >99

    12.1

    1.71

    88%

    3

    IDPi 1b

    >99

    9.7

    1.40

    79%

    4

    IDPi 1c

    >99

    15.7

    2.15

    88%

    5

    IDPi 1d

    >99

    24.9

    2.09

    87%

    6

    IDPi 1e

    >99

    18.9

    2.38

    91%

    7

    IDPi 1f

    >99

    14.0

    2.58

    80%

    8

    IDPi 1g

    >99

    18.1

    2.92

    88%

    9

    IDPi 1h

    >99

    12.8

    2.34

    81%

    10 d)

    IDPi 1e

    56

    13.2

    1.30

    91%

    [IBVE]0/[Catalyst]0 = 200:1, [IBVE]0 = 0.4 M at −78 °C for 30 min; b) determined by gel permeation chromatography (GPC) using polystyrene standards; c) determined by 13C NMR analysis; d) quenched in 10 s with the addition of Et3N.

  • Table 2   Stereoselective cationic polymerization of vinyl ethers with IDPi 1ea)

    Entry

    VE

    Solvent

    Mn,GPC b) (kg/mol)

    Đ b)

    mc)

    1

    IBVE

    Toluene

    18.9

    2.38

    91%

    2

    IBVE

    Hex/tol = 1:4

    28.1

    2.33

    87%

    3

    IBVE

    Hex/tol = 1:1

    20.8

    1.65

    85%

    4 d)

    IBVE

    Toluene

    25.1

    1.54

    83%

    5 e)

    IBVE

    Toluene

    19.3

    1.74

    90%

    6 f)

    IBVE

    Toluene

    16.9

    1.62

    90%

    7 g)

    IBVE

    Toluene

    58.4

    1.79

    89%

    8 h)

    IBVE

    Toluene

    101.0

    1.68

    86%

    9

    EVE

    Toluene

    10.2

    1.57

    85%

    10

    NPVE

    Toluene

    14.0

    1.74

    90%

    11

    NBVE

    Toluene

    24.9

    1.68

    88%

    12

    ArFVE

    Toluene

    34.8

    1.79

    89%

    Polymerization conditions: [IBVE]0/[IDPi 1e]0 = 200:1 at −78 °C for 30 min. hex = hexane; tol = toluene. b) Determined by GPC using polystyrene standards. c) Determined by 13C NMR analysis. d) Conducted at −70 °C. e) 0.2 M of IBVE was used. f) 0.1 M of IBVE was used. g) Polymerization carried out at [IBVE]0/[IDPi 1e]0 = 500:1. h) Polymerization carried out at [IBVE]0/[IDPi 1e]0 = 1200:1.

qqqq

Contact and support