logo

Non-fullerene acceptor pre-aggregates enable high efficiency pseudo-bulk heterojunction organic solar cells

More info
  • ReceivedAug 14, 2021
  • AcceptedSep 25, 2021
  • PublishedNov 18, 2021

Abstract


Funded by

the National Natural Science Foundation of China(52073221,21774097)

the Fundamental Research Funds for the Central Universities(WUT:,2021III016JC,2020-YB-004)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (52073221, 21774097) and the Fundamental Research Funds for the Central Universities (WUT: 2021III016JC, 2020-YB-004) of China. We thank beamline BL14B1 and BL16B1 at Shanghai Synchrotron Radiation Facility (China) for providing beam times to perform GIWAXS and GISAXS measurements.


Interest statement

The authors declare no conflict of interest.


References

[1] Yuan J, Zhang H, Zhang R, Wang Y, Hou J, Leclerc M, Zhan X, Huang F, Gao F, Zou Y, Li Y. Chem, 2020, 6: 2147-2161 CrossRef Google Scholar

[2] Armin A, Li W, Sandberg OJ, Xiao Z, Ding L, Nelson J, Neher D, Vandewal K, Shoaee S, Wang T, Ade H, Heumüller T, Brabec C, Meredith P. Adv Energy Mater, 2021, 11: 2003570 CrossRef Google Scholar

[3] Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119-128 CrossRef PubMed ADS Google Scholar

[4] Gurney RS, Lidzey DG, Wang T. Rep Prog Phys, 2019, 82: 036601 CrossRef PubMed ADS Google Scholar

[5] Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170-1174 CrossRef PubMed Google Scholar

[6] Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140-1151 CrossRef Google Scholar

[7] Ma Y, Zhang M, Wan S, Yin P, Wang P, Cai D, Liu F, Zheng Q. Joule, 2021, 5: 197-209 CrossRef Google Scholar

[8] Zhang Z, Li Y, Cai G, Zhang Y, Lu X, Lin Y. J Am Chem Soc, 2020, 142: 18741-18745 CrossRef PubMed Google Scholar

[9] Li C, Zhou J, Song J, Xu J, Zhang H, Zhang X, Guo J, Zhu L, Wei D, Han G, Min J, Zhang Y, Xie Z, Yi Y, Yan H, Gao F, Liu F, Sun Y. Nat Energy, 2021, 6: 605-613 CrossRef ADS Google Scholar

[10] Chen S, Feng L, Jia T, Jing J, Hu Z, Zhang K, Huang F. Sci China Chem, 2021, 64: 1192-1199 CrossRef Google Scholar

[11] Zhan L, Li S, Xia X, Li Y, Lu X, Zuo L, Shi M, Chen H. Adv Mater, 2021, 33: 2007231 CrossRef PubMed Google Scholar

[12] Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci Bull, 2020, 65: 272-275 CrossRef ADS Google Scholar

[13] Yao H, Ye L, Hou J, Jang B, Han G, Cui Y, Su GM, Wang C, Gao B, Yu R, Zhang H, Yi Y, Woo HY, Ade H, Hou J. Adv Mater, 2017, 29: 1700254 CrossRef PubMed Google Scholar

[14] Lai H, Zhao Q, Chen Z, Chen H, Chao P, Zhu Y, Lang Y, Zhen N, Mo D, Zhang Y, He F. Joule, 2020, 4: 688-700 CrossRef Google Scholar

[15] Wang H, Liu T, Zhou J, Mo D, Han L, Lai H, Chen H, Zheng N, Zhu Y, Xie Z, He F. Adv Sci, 2020, 7: 1903784 CrossRef PubMed Google Scholar

[16] Lin B, Zhou X, Zhao H, Yuan J, Zhou K, Chen K, Wu H, Guo R, Scheel MA, Chumakov A, Roth SV, Mao Y, Wang L, Tang Z, Müller-Buschbaum P, Ma W. Energy Environ Sci, 2020, 13: 2467-2479 CrossRef Google Scholar

[17] Li D, Zhang X, Liu D, Wang T. J Mater Chem A, 2020, 8: 15607-15619 CrossRef Google Scholar

[18] Gao M, Wang W, Hou J, Ye L. Aggregate, 2021, : doi: 10.1002/agt2.46 CrossRef Google Scholar

[19] Zhu W, Spencer AP, Mukherjee S, Alzola JM, Sangwan VK, Amsterdam SH, Swick SM, Jones LO, Heiber MC, Herzing AA, Li G, Stern CL, DeLongchamp DM, Kohlstedt KL, Hersam MC, Schatz GC, Wasielewski MR, Chen LX, Facchetti A, Marks TJ. J Am Chem Soc, 2020, 142: 14532-14547 CrossRef PubMed Google Scholar

[20] Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789-1791 CrossRef ADS Google Scholar

[21] Zhou K, Xin J, Ma W. ACS Energy Lett, 2019, 4: 447-455 CrossRef Google Scholar

[22] Yan Y, Liu X, Wang T. Adv Mater, 2017, 29: 1601674 CrossRef PubMed Google Scholar

[23] Li W, Cai J, Yan Y, Cai F, Li S, Gurney RS, Liu D, McGettrick JD, Watson TM, Li Z, Pearson AJ, Lidzey DG, Hou J, Wang T. Sol RRL, 2018, 2: 1800114 CrossRef Google Scholar

[24] Wei Y, Yu J, Qin L, Chen H, Wu X, Wei Z, Zhang X, Xiao Z, Ding L, Gao F, Huang H. Energy Environ Sci, 2021, 14: 2314-2321 CrossRef Google Scholar

[25] Wang H, Cheng P, Tan S, Chen C, Chang B, Tsao C, Chen L, Hsieh C, Lin Y, Cheng H, Yang Y, Wei K. Adv Energy Mater, 2021, 11: 2003576 CrossRef Google Scholar

[26] Sun R, Guo J, Sun C, Wang T, Luo Z, Zhang Z, Jiao X, Tang W, Yang C, Li Y, Min J. Energy Environ Sci, 2019, 12: 384-395 CrossRef Google Scholar

[27] Jiang K, Zhang J, Peng Z, Lin F, Wu S, Li Z, Chen Y, Yan H, Ade H, Zhu Z, Jen AKY. Nat Commun, 2021, 12: 468 CrossRef PubMed ADS Google Scholar

[28] Wan J, Zhang L, He Q, Liu S, Huang B, Hu L, Zhou W, Chen Y. Adv Funct Mater, 2020, 30: 1909760 CrossRef Google Scholar

[29] Fu H, Gao W, Li Y, Lin F, Wu X, Son JH, Luo J, Woo HY, Zhu Z, Jen AK. Small Methods, 2020, 4: 2000687 CrossRef Google Scholar

[30] Mao Y, Guo C, Li D, Li W, Du B, Chen M, Wang Y, Liu D, Wang T. ACS Appl Mater Interfaces, 2019, 11: 35827-35834 CrossRef PubMed Google Scholar

[31] Zhu L, Zhang M, Zhou G, Hao T, Xu J, Wang J, Qiu C, Prine N, Ali J, Feng W, Gu X, Ma Z, Tang Z, Zhu H, Ying L, Zhang Y, Liu F. Adv Energy Mater, 2020, 10: 1904234 CrossRef Google Scholar

[32] S. Gurney R, Li W, Yan Y, Liu D, J. Pearson A, Wang T. J Energy Chem, 2019, 37: 148-156 CrossRef Google Scholar

[33] Yu R, Yao H, Chen Z, Xin J, Hong L, Xu Y, Zu Y, Ma W, Hou J. Adv Mater, 2019, 31: 1900477 CrossRef PubMed Google Scholar

[34] Zhang X, Wang H, Li D, Chen M, Mao Y, Du B, Zhuang Y, Tan W, Huang W, Zhao Y, Liu D, Wang T. Macromolecules, 2020, 53: 3747-3755 CrossRef ADS Google Scholar

[35] Cai J, Wang H, Zhang X, Li W, Li D, Mao Y, Du B, Chen M, Zhuang Y, Liu D, Qin HL, Zhao Y, Smith JA, Kilbride RC, Parnell AJ, Jones RAL, Lidzey DG, Wang T. J Mater Chem A, 2020, 8: 4230-4238 CrossRef Google Scholar

[36] Li W, Chen M, Cai J, Spooner ELK, Zhang H, Gurney RS, Liu D, Xiao Z, Lidzey DG, Ding L, Wang T. Joule, 2019, 3: 819-833 CrossRef Google Scholar

[37] Li W, Chen M, Zhang Z, Cai J, Zhang H, Gurney RS, Liu D, Yu J, Tang W, Wang T. Adv Funct Mater, 2018, 29: 1807662 CrossRef Google Scholar

[38] Du B, Geng R, Tan W, Mao Y, Li D, Zhang X, Liu D, Tang W, Huang W, Wang T. J Energy Chem, 2021, 54: 131-137 CrossRef Google Scholar

[39] Chen M, Zhang Z, Li W, Cai J, Yu J, Spooner ELK, Kilbride RC, Li D, Du B, Gurney RS, Liu D, Tang W, Lidzey DG, Wang T. Sci China Chem, 2019, 62: 1221-1229 CrossRef Google Scholar

[40] Yu Y, Sun R, Wang T, Yuan X, Wu Y, Wu Q, Shi M, Yang W, Jiao X, Min J. Adv Funct Mater, 2021, 31: 2008767 CrossRef Google Scholar

[41] Xu X, Yu L, Yan H, Li R, Peng Q. Energy Environ Sci, 2020, 13: 4381-4388 CrossRef Google Scholar

[42] Li D, Guo C, Zhang X, Du B, Wang P, Cheng S, Cai J, Wang H, Liu D, Yao H, Hou J, Wang T. Aggregate, 2021, : doi: 10.1002/agt2.104 CrossRef Google Scholar

[43] Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J. Adv Mater, 2020, 32: 1908205 CrossRef PubMed Google Scholar

[44] Jiang K, Wei Q, Lai JYL, Peng Z, Kim HK, Yuan J, Ye L, Ade H, Zou Y, Yan H. Joule, 2019, 3: 3020-3033 CrossRef Google Scholar

[45] Zhang Y, Liu K, Huang J, Xia X, Cao J, Zhao G, Fong PWK, Zhu Y, Yan F, Yang Y, Lu X, Li G. Nat Commun, 2021, 12: 4815 CrossRef PubMed ADS Google Scholar

[46] Xiao Y, Lu X. Mater Today Nano, 2019, 5: 100030 CrossRef Google Scholar

[47] Dai S, Li T, Wang W, Xiao Y, Lau TK, Li Z, Liu K, Lu X, Zhan X. Adv Mater, 2018, 30: 1706571 CrossRef PubMed Google Scholar

[48] Pedersen JS, Schurtenberger P. Macromolecules, 1996, 29: 7602-7612 CrossRef ADS Google Scholar

[49] Xi Y, Wolf CM, Pozzo LD. Soft Matter, 2019, 15: 1799-1812 CrossRef PubMed ADS Google Scholar

[50] Du B, Geng R, Li W, Li D, Mao Y, Chen M, Zhang X, Smith JA, Kilbride RC, O’Kane ME, Liu D, Lidzey DG, Tang W, Wang T. ACS Energy Lett, 2019, 4: 2378-2385 CrossRef Google Scholar

  • Figure 1

    (a) Chemical structures of D18, BTP-eC11 and N3; (b) diagram of device structure; (c) schematic illustration of NFA molecules treated by solution-aging or anti-solvent addition, which forms pseudo-BHJ after the penetration of acceptor pre-aggregates into the polymer donor networks (color online).

  • Figure 2

    (a) The UV-Vis absorption spectra, (b) J-V characteristics, and (c) EQE curves of D18:BTP-eC11 (CF) blend-cast film, D18/BTP-eC11 (CF) sequential-cast film, and D18/BTP-eC11 (Tol-40) sequential-cast film. (d) The UV-Vis absorption spectra, (e) J-V characteristics, and (f) EQE curves of D18:N3 (CF) blend-cast film, D18/N3 (CF) sequential-cast film, and D18/N3 (CF/Tol, 99/1) sequential-cast film (color online).

  • Figure 3

    TEM images of (a) pristine D18, (b) D18 (SVA), (c) BTP-eC11 (CF), (d) BTP-eC11 (Tol-40), (e) N3 (CF), and (f) N3 (CF/Tol, 99/1) films. GISAXS of (g) pristine D18, (h) D18 (SVA), (i) BTP-eC11 (CF), (j) BTP-eC11 (Tol-40), (k) N3 (CF), and (l) N3 (CF/Tol, 99/1) films. (m) 1D profiles along qxy axis (color online).

  • Figure 4

    AFM images of (a) D18:BTP-eC11 (CF) blend-cast film, (b) D18/BTP-eC11 (CF) sequential-cast film, (c) D18/BTP-eC11 (Tol-40) sequential-cast film, (d) D18:N3 blend-cast film, (e) D18/N3 (CF) sequential-cast film, and (f) D18/N3 (CF/Tol, 99/1) sequential-cast film. (g, h) Corresponding 1D GISAXS profiles along qxy axis. (i, j) Corresponding 1D GIWAXS profiles along the out-of-plane and in-plane directions (color online).

  • Table 1   Photovoltaic parameters of D18:NFA (BTP-eC11 or N3) blend-cast and sequential-cast OSCs. The average values and standard deviations in the brackets were obtained from statistical analysis of over 20 individual devices

    Device type

    PCEmax (PCEave a)) (%)

    FFmax (FFave) b)

    (%)

    JSC max (JSC ave) c)

    (mA cm−2)

    Calculated JSC (mA cm−2)

    VOC max (VOC ave) d) (V)

    D18:BTP-eC11 (CF)

    blend-cast

    16.6 (16.5±0.1)

    72.7 (72.2±0.5)

    27.1 (26.7±0.4)

    25.8

    0.86 (0.86±0)

    D18/BTP-eC11 (CF)

    sequential-cast

    16.0 (15.7±0.3)

    71.5 (71.0±0.5)

    25.8 (25.5±0.3)

    24.6

    0.87 (0.86±0.1)

    D18/BTP-eC11 (Tol-40)

    sequential-cast

    17.7 (17.6±0.1)

    75.2 (75.1±0.1)

    27.6 (27.5±0.1)

    26.3

    0.85 (0.85±0)

    D18:N3 (CF)

    blend-cast

    17.0 (16.9±0.1)

    72.4 (71.8±0.6)

    27.8 (27.3±0.5)

    26.4

    0.84 (0.84±0)

    D18/N3 (CF)

    sequential-cast

    16.8 (16.4±0.3)

    71.0 (70.6±0.4)

    27.2 (26.7±0.4)

    25.9

    0.84 (0.83±0.01)

    D18/N3 (CF/Tol, 99/1)

    sequential-cast

    17.5 (17.3±0.1)

    74.4 (73.9±0.5)

    27.9 (27.5±0.4)

    26.5

    0.84 (0.83±0.01)

    PCEave is the average PCE; b) FFmax is the maximum FF, FFave is the average FF; c) JSC max is the maximum JSC, JSC ave is the average JSC; d) VOC max is the maximum VOC, VOC ave is the average VOC.

  • Table 2   Fitting parameters of 1D GISAXS profiles of D18:BTP-eC11 (or N3) blend-cast and sequential-cast films with or without pre-aggregation treatment

    Device type a)

    b (nm)

    L(nm)

    2R (nm)

    η (nm)

    D

    2Rg (nm)

    D18:BTP-eC11 (CF)

    BC

    1.3

    335.2

    10.4

    10.8

    2.7

    48.3

    D18/BTP-eC11 (CF)

    SC

    2.6

    448.6

    10.9

    10.2

    2.6

    44.1

    D18/BTP-eC11 (Tol-40)

    SC

    3.4

    463.3

    11.5

    11.5

    2.9

    54.7

    D18:N3 (CF)

    BC

    1.2

    369.5

    9.8

    9.6

    2.7

    42.9

    D18/N3 (CF)

    SC

    3.7

    465.2

    11.5

    9.2

    2.5

    38.4

    D18/N3 (CF/Tol, 99/1)

    SC

    5.1

    473.5

    13.7

    13.5

    2.9

    64.2

    BC stands for blend-casting; SC stands for sequential-casting.

qqqq

Contact and support