logo

Cross-linked hole transport layers for high-efficiency perovskite tandem solar cells

More info
  • ReceivedApr 8, 2021
  • AcceptedJun 25, 2021
  • PublishedJun 29, 2021

Abstract


Acknowledgment

This work is financially supported by the National Key R&D Program of China (2018YFB1500102), the National Natural Science Foundation of China (61974063, 22005139), Natural Science Foundation of Jiangsu Province (BK20202008, BK20190315), Fundamental Research Funds for the Central Universities (0205/14380252) and Program for Innovative Talents and Entrepreneur in Jiangsu. The work in SIMIT is supported by the National Natural Science Foundation of China (62074153), Strategic Priority Research Program of Chinese Academy of Sciences (XDA17020403), Science and Technology Commission of Shanghai (19DZ1207602 and 20DZ1207103). We are grateful to the High Performance Computing Center (HPCC) of Nanjing University for doing the numerical calculations in this work on its blade cluster system.


Interest statement

The authors declare no conflict of interest


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Tan H, Jain A, Voznyy O, Lan X, García de Arquer FP, Fan JZ, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan LN, Zhao Y, Lu ZH, Yang Z, Hoogland S, Sargent EH. Science, 2017, 355: 722-726 CrossRef PubMed ADS Google Scholar

[2] Jeong M, Choi IW, Go EM, Cho Y, Kim M, Lee B, Jeong S, Jo Y, Choi HW, Lee J, Bae JH, Kwak SK, Kim DS, Yang C. Science, 2020, 369: 1615-1620 CrossRef PubMed ADS Google Scholar

[3] Hassan Y, Park JH, Crawford ML, Sadhanala A, Lee J, Sadighian JC, Mosconi E, Shivanna R, Radicchi E, Jeong M, Yang C, Choi H, Park SH, Song MH, De Angelis F, Wong CY, Friend RH, Lee BR, Snaith HJ. Nature, 2021, 591: 72-77 CrossRef PubMed ADS Google Scholar

[4] Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050-6051 CrossRef PubMed Google Scholar

[5] Best Research-Cell Efficiencies. NREL. 2020, https://www.nrel.gov/pv. Google Scholar

[6] Hou Y, Aydin E, De Bastiani M, Xiao C, Isikgor FH, Xue DJ, Chen B, Chen H, Bahrami B, Chowdhury AH, Johnston A, Baek SW, Huang Z, Wei M, Dong Y, Troughton J, Jalmood R, Mirabelli AJ, Allen TG, Van Kerschaver E, Saidaminov MI, Baran D, Qiao Q, Zhu K, De Wolf S, Sargent EH. Science, 2020, 367: 1135-1140 CrossRef PubMed ADS Google Scholar

[7] Xu J, Boyd CC, Yu ZJ, Palmstrom AF, Witter DJ, Larson BW, France RM, Werner J, Harvey SP, Wolf EJ, Weigand W, Manzoor S, van Hest MFAM, Berry JJ, Luther JM, Holman ZC, McGehee MD. Science, 2020, 367: 1097-1104 CrossRef PubMed ADS Google Scholar

[8] Chen B, Yu ZJ, Manzoor S, Wang S, Weigand W, Yu Z, Yang G, Ni Z, Dai X, Holman ZC, Huang J. Joule, 2020, 4: 850-864 CrossRef Google Scholar

[9] Fu F, Feurer T, Weiss TP, Pisoni S, Avancini E, Andres C, Buecheler S, Tiwari AN. Nat Energy, 2017, 2: 16190 CrossRef ADS Google Scholar

[10] Han Q, Hsieh YT, Meng L, Wu JL, Sun P, Yao EP, Chang SY, Bae SH, Kato T, Bermudez V, Yang Y. Science, 2018, 361: 904-908 CrossRef PubMed ADS Google Scholar

[11] Kim DH, Muzzillo CP, Tong J, Palmstrom AF, Larson BW, Choi C, Harvey SP, Glynn S, Whitaker JB, Zhang F, Li Z, Lu H, van Hest MFAM, Berry JJ, Mansfield LM, Huang Y, Yan Y, Zhu K. Joule, 2019, 3: 1734-1745 CrossRef Google Scholar

[12] Eperon GE, Leijtens T, Bush KA, Prasanna R, Green T, Wang JTW, McMeekin DP, Volonakis G, Milot RL, May R, Palmstrom A, Slotcavage DJ, Belisle RA, Patel JB, Parrott ES, Sutton RJ, Ma W, Moghadam F, Conings B, Babayigit A, Boyen HG, Bent S, Giustino F, Herz LM, Johnston MB, McGehee MD, Snaith HJ. Science, 2016, 354: 861-865 CrossRef PubMed ADS arXiv Google Scholar

[13] Lin R, Xiao K, Qin Z, Han Q, Zhang C, Wei M, Saidaminov MI, Gao Y, Xu J, Xiao M, Li A, Zhu J, Sargent EH, Tan H. Nat Energy, 2019, 4: 864-873 CrossRef ADS Google Scholar

[14] Xiao K, Lin R, Han Q, Hou Y, Qin Z, Nguyen HT, Wen J, Wei M, Yeddu V, Saidaminov MI, Gao Y, Luo X, Wang Y, Gao H, Zhang C, Xu J, Zhu J, Sargent EH, Tan H. Nat Energy, 2020, 5: 870-880 CrossRef ADS Google Scholar

[15] Gu S, Lin R, Han Q, Gao Y, Tan H, Zhu J. Adv Mater, 2020, 32: 1907392 CrossRef PubMed Google Scholar

[16] Shockley W, Queisser HJ. J Appl Phys, 1961, 32: 510-519 CrossRef ADS Google Scholar

[17] Green MA. Nat Energy, 2016, 1: 15015 CrossRef ADS Google Scholar

[18] Rong Y, Hu Y, Mei A, Tan H, Saidaminov MI, Seok SI, McGehee MD, Sargent EH, Han H. Science, 2018, 361: eaat8235 CrossRef PubMed Google Scholar

[19] Li H, Zhang W. Chem Rev, 2020, 120: 9835-9950 CrossRef PubMed Google Scholar

[20] Jošt M, Kegelmann L, Korte L, Albrecht S. Adv Energy Mater, 2020, 10: 1904102 CrossRef Google Scholar

[21] Tan H, Che F, Wei M, Zhao Y, Saidaminov MI, Todorović P, Broberg D, Walters G, Tan F, Zhuang T, Sun B, Liang Z, Yuan H, Fron E, Kim J, Yang Z, Voznyy O, Asta M, Sargent EH. Nat Commun, 2018, 9: 3100 CrossRef PubMed ADS Google Scholar

[22] Chen C, Song Z, Xiao C, Zhao D, Shrestha N, Li C, Yang G, Yao F, Zheng X, Ellingson RJ, Jiang CS, Al-Jassim M, Zhu K, Fang G, Yan Y. Nano Energy, 2019, 61: 141-147 CrossRef Google Scholar

[23] Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade GF, Watts JF, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend RH, Gong Q, Snaith HJ, Zhu R. Science, 2018, 360: 1442-1446 CrossRef PubMed ADS Google Scholar

[24] Wang Y, Zhang M, Xiao K, Lin R, Luo X, Han Q, Tan H. J Semicond, 2020, 41: 051201 CrossRef ADS Google Scholar

[25] Wu WQ, Yang Z, Rudd PN, Shao Y, Dai X, Wei H, Zhao J, Fang Y, Wang Q, Liu Y, Deng Y, Xiao X, Feng Y, Huang J. Sci Adv, 2019, 5: eaav8925 CrossRef PubMed ADS Google Scholar

[26] Lin Y, Chen B, Zhao F, Zheng X, Deng Y, Shao Y, Fang Y, Bai Y, Wang C, Huang J. Adv Mater, 2017, 29: 1700607 CrossRef PubMed Google Scholar

[27] Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng XC, Huang J. Nat Energy, 2017, 2: 17102 CrossRef ADS Google Scholar

[28] Stolterfoht M, Caprioglio P, Wolff CM, Márquez JA, Nordmann J, Zhang S, Rothhardt D, Hörmann U, Amir Y, Redinger A, Kegelmann L, Zu F, Albrecht S, Koch N, Kirchartz T, Saliba M, Unold T, Neher D. Energy Environ Sci, 2019, 12: 2778-2788 CrossRef Google Scholar

[29] Hu M, Bi C, Yuan Y, Bai Y, Huang J. Adv Sci, 2016, 3: 1500301 CrossRef PubMed Google Scholar

[30] Stolterfoht M, Wolff CM, Márquez JA, Zhang S, Hages CJ, Rothhardt D, Albrecht S, Burn PL, Meredith P, Unold T, Neher D. Nat Energy, 2018, 3: 847-854 CrossRef ADS Google Scholar

[31] Yang L, Cai F, Yan Y, Li J, Liu D, Pearson AJ, Wang T. Adv Funct Mater, 2017, 27: 1702613 CrossRef Google Scholar

[32] Shang R, Zhou Z, Nishioka H, Halim H, Furukawa S, Takei I, Ninomiya N, Nakamura E. J Am Chem Soc, 2018, 140: 5018-5022 CrossRef PubMed Google Scholar

[33] Huang C, Fu W, Li CZ, Zhang Z, Qiu W, Shi M, Heremans P, Jen AKY, Chen H. J Am Chem Soc, 2016, 138: 2528-2531 CrossRef PubMed Google Scholar

[34] Li Y, Cole MD, Gao Y, Emrick T, Xu Z, Liu Y, Russell TP. ACS Appl Energy Mater, 2019, 2: 1634-1641 CrossRef Google Scholar

[35] Rakstys K, Stephen M, Saghaei J, Jin H, Gao M, Zhang G, Hutchinson K, Chesman A, Burn PL, Gentle I, Shaw PE. ACS Appl Energy Mater, 2020, 3: 889-899 CrossRef Google Scholar

[36] Xu J, Voznyy O, Comin R, Gong X, Walters G, Liu M, Kanjanaboos P, Lan X, Sargent EH. Adv Mater, 2016, 28: 2807-2815 CrossRef PubMed Google Scholar

[37] Al-Ashouri A, Köhnen E, Li B, Magomedov A, Hempel H, Caprioglio P, Márquez JA, Morales Vilches AB, Kasparavicius E, Smith JA, Phung N, Menzel D, Grischek M, Kegelmann L, Skroblin D, Gollwitzer C, Malinauskas T, Jošt M, Matič G, Rech B, Schlatmann R, Topič M, Korte L, Abate A, Stannowski B, Neher D, Stolterfoht M, Unold T, Getautis V, Albrecht S. Science, 2020, 370: 1300-1309 CrossRef PubMed ADS Google Scholar

[38] Guo P, Ye Q, Yang X, Zhang J, Xu F, Shchukin D, Wei B, Wang H. J Mater Chem A, 2019, 7: 2497-2506 CrossRef Google Scholar

[39] Zhu P, Gu S, Luo X, Gao Y, Li S, Zhu J, Tan H. Adv Energy Mater, 2020, 10: 1903083 CrossRef Google Scholar

[40] Sun X, Deng X, Li Z, Xiong B, Zhong C, Zhu Z, Li Z, Jen AKY. Adv Sci, 2020, 7: 1903331 CrossRef PubMed Google Scholar

[41] Fei C, Li B, Zhang R, Fu H, Tian J, Cao G. Adv Energy Mater, 2017, 7: 1602017 CrossRef Google Scholar

[42] Tan F, Tan H, Saidaminov MI, Wei M, Liu M, Mei A, Li P, Zhang B, Tan CS, Gong X, Zhao Y, Kirmani AR, Huang Z, Fan JZ, Quintero-Bermudez R, Kim J, Zhao Y, Voznyy O, Gao Y, Zhang F, Richter LJ, Lu ZH, Zhang W, Sargent EH. Adv Mater, 2019, 31: 1807435 CrossRef PubMed Google Scholar

[43] Lin Y, Shen L, Dai J, Deng Y, Wu Y, Bai Y, Zheng X, Wang J, Fang Y, Wei H, Ma W, Zeng XC, Zhan X, Huang J. Adv Mater, 2017, 29: 1604545 CrossRef PubMed Google Scholar

[44] Chiang TY, Fan GL, Jeng JY, Chen KC, Chen P, Wen TC, Guo TF, Wong KT. ACS Appl Mater Interfaces, 2015, 7: 24973-24981 CrossRef PubMed Google Scholar

[45] Wu Y, Wang P, Wang S, Wang Z, Cai B, Zheng X, Chen Y, Yuan N, Ding J, Zhang WH. ChemSusChem, 2018, 11: 837-842 CrossRef PubMed Google Scholar

[46] Wei D, Ma F, Wang R, Dou S, Cui P, Huang H, Ji J, Jia E, Jia X, Sajid S, Elseman AM, Chu L, Li Y, Jiang B, Qiao J, Yuan Y, Li M. Adv Mater, 2018, 30: 1707583 CrossRef PubMed Google Scholar

[47] Chen X, Chen XR, Hou TZ, Li BQ, Cheng XB, Zhang R, Zhang Q. Sci Adv, 2019, 5: eaau7728 CrossRef PubMed ADS Google Scholar

[48] Medina E, Pinter B. J Phys Chem A, 2020, 124: 4223-4234 CrossRef PubMed ADS Google Scholar

[49] Meng F, Liu J, Shen L, Shi J, Han A, Zhang L, Liu Y, Yu J, Zhang J, Zhou R, Liu Z. Front Energy, 2017, 11: 78-84 CrossRef Google Scholar

[50] Zhang L, Liu W, Guo W, Bao J, Zhang X, Liu J, Wang D, Meng F, Liu Z. IEEE J Photovoltaics, 2016, 6: 604-610 CrossRef Google Scholar

  • Figure 1

    Photovoltaic performances of wide-bandgap PSCs. (a) Molecular structures of PTAA and VNPB. VNPB molecules can be thermally cross-linked via the unsaturated double bonds. (b) Performance (VOC, JSC, FF, and PCE) statistics. (c) J–V and (d) EQE curves of the champion devices (color online).

  • Figure 2

    Characterizations of wide-bandgap perovskite solar cells and films. (a) SCLC and (b) TPV measurements of devices with PTAA and VNPB. (c) The correlation between VOC and light intensity for devices using PTAA and VNPB as HTLs. (d) Contact angles of perovskite precursor solution on the HTL. (e) The top-view SEM images and (f) X-ray diffraction patterns of perovskite films on PTAA and VNPB. (g) Steady-state PL and (h) TRPL spectra of the perovskite films deposited on bare glass, ITO/PTAA and ITO/VNPB substrates. The PL spectra were taken from the bottom glass side (color online).

  • Figure 3

    Density functional theory calculation of the HTL/perovskite interface. (a, c) Configuration of the HTL/perovskite interface: (a) PTAA and (c) VNPB to the perovskite crystal surface. (b, d) Charge density difference between HTLs and perovskites: (b) PTAA and (d) VNPB. Blue area represents electron loss and yellow area represents electron enrichment (color online).

  • Figure 4

    Photovoltaic performance of all-perovskite tandem solar cells. (a) Device structure and (b) cross-sectional SEM image of all-perovskite tandem solar cells. The histograms of (c) VOC and (d) PCE of the tandem devices with PTAA and VNPB (15 devices for each). (e) J–V curves of the champion tandem solar cell with PTAA and VNPB. (f) EQE spectra of the tandem device with VNPB (color online).

  • Figure 5

    Performances of perovskite/silicon tandem solar cells. (a) J–V curves of 1.60-eV perovskite solar cells with PTAA and VNPB. (b) Structure of a perovskite/silicon tandem solar cell. (c) J–V curve of the perovskite/silicon tandem solar cell. (d) EQE spectra of the perovskite/silicon tandem solar cell (color online).

  • Table 1   Photovoltaic performances of wide-bandgap perovskite solar cells

    HTL

    VOC (V)

    JSC(mA cm−2)

    FF (%)

    PCE (%)

    PTAA

    Average

    1.16±0.01

    16.7±0.2

    77.0±1.4

    15.0±0.3

    Best

    1.18

    16.9

    79.1

    15.8

    VNPB

    Average

    1.20±0.02

    16.9±0.1

    78.6±1.1

    15.9±0.3

    Best

    1.23

    17.0

    79.8

    16.7

  • Table 2   Binding energy (EB) and formation energy of vacancy defects at the HTL/perovskite interface

    EB(eV nm−2)

    I-vacancy (eV)

    Br-vacancy (eV)

    MA-vacancy (eV)

    PTAA

    0.199

    0.839

    1.023

    3.959

    VNPB

    0.284

    1.107

    1.340

    4.461

  • Table 3   Photovoltaic performances of all-perovskite tandem solar cells

    HTLs of front subcells

    VOC (V)

    JSC(mA cm−2)

    FF (%)

    PCE (%)

    PTAA

    Average

    1.92±0.02

    15.3±0.3

    78.5±0.9

    22.9±0.5

    Best

    1.95

    15.4

    78.8

    23.7

    VNPB

    Average

    1.97±0.02

    15.4±0.3

    79.1±1.1

    23.8±0.5

    Best

    2.00

    15.6

    79.9

    24.9

qqqq

Contact and support