logo

Photocatalytic divergent decarboxylative amination: a metal-free access to aliphatic amines and hydrazines

More info
  • ReceivedMay 26, 2021
  • AcceptedJun 15, 2021
  • PublishedAug 31, 2021

Abstract


Funded by

National Natural Science Foundation of China(21602028)

Beijing National Laboratory for Molecular Sciences(BNLMS201913)

the Recruitment Program of Global Experts

and Fuzhou University.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21602028), Beijing National Laboratory for Molecular Sciences (BNLMS201913), the Recruitment Program of Global Experts, and Fuzhou University.


Interest statement

The authors declare no conflict of interest.


Supplement

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Cai Q, Zhou W. Chin J Chem, 2020, 38: 879-893 CrossRef Google Scholar

[2] Lawrence SA. Amines: Synthesis Properties and Applications. Cambridge: Cambridge University Press, 2004. Google Scholar

[3] Ricci A. Amino Group Chemistry: From Synthesis to the Life Sciences. Weinheim: Weinheim Wiley-VCH, 2008. Google Scholar

[4] Vitaku E, Smith DT, Njardarson JT. J Med Chem, 2014, 57: 10257-10274 CrossRef PubMed Google Scholar

[5] Ruiz-Castillo P, Buchwald SL. Chem Rev, 2016, 116: 12564-12649 CrossRef PubMed Google Scholar

[6] Bhunia S, Pawar GG, Kumar SV, Jiang Y, Ma D. Angew Chem Int Ed, 2017, 56: 16136-16179 CrossRef PubMed Google Scholar

[7] Park Y, Kim Y, Chang S. Chem Rev, 2017, 117: 9247-9301 CrossRef PubMed Google Scholar

[8] Gan Z, Li G, Yang X, Yan Q, Xu G, Li G, Jiang YY, Yang D. Sci China Chem, 2020, 63: 1652-1658 CrossRef Google Scholar

[9] Chen H, Chen DH, Huang PQ. Sci China Chem, 2020, 63: 370-376 CrossRef Google Scholar

[10] Bissember AC, Lundgren RJ, Creutz SE, Peters JC, Fu GC. Angew Chem, 2013, 125: 5233-5237 CrossRef Google Scholar

[11] Do HQ, Bachman S, Bissember AC, Peters JC, Fu GC. J Am Chem Soc, 2014, 136: 2162-2167 CrossRef PubMed Google Scholar

[12] Xuan J, Zhang ZG, Xiao WJ. Angew Chem Int Ed, 2015, 54: 15632-15641 CrossRef PubMed Google Scholar

[13] Huang H, Jia K, Chen Y. ACS Catal, 2016, 6: 4983-4988 CrossRef Google Scholar

[14] Wei Y, Hu P, Zhang M, Su W. Chem Rev, 2017, 117: 8864-8907 CrossRef PubMed Google Scholar

[15] Patra T, Maiti D. Chem Eur J, 2017, 23: 7382-7401 CrossRef PubMed Google Scholar

[16] Murarka S. Adv Synth Catal, 2018, 360: 1735-1753 CrossRef Google Scholar

[17] Schwarz J, König B. Green Chem, 2018, 20: 323-361 CrossRef Google Scholar

[18] Chen Y, Lu LQ, Yu DG, Zhu CJ, Xiao WJ. Sci China Chem, 2019, 62: 24-57 CrossRef Google Scholar

[19] Okada K, Okamoto K, Oda M. J Am Chem Soc, 1988, 110: 8736-8738 CrossRef Google Scholar

[20] Wang Z, Zhu L, Yin F, Su Z, Li Z, Li C. J Am Chem Soc, 2012, 134: 4258-4263 CrossRef PubMed Google Scholar

[21] Schnermann MJ, Overman LE. Angew Chem Int Ed, 2012, 51: 9576-9580 CrossRef PubMed Google Scholar

[22] Cornella J, Edwards JT, Qin T, Kawamura S, Wang J, Pan CM, Gianatassio R, Schmidt M, Eastgate MD, Baran PS. J Am Chem Soc, 2016, 138: 2174-2177 CrossRef PubMed Google Scholar

[23] Huihui KMM, Caputo JA, Melchor Z, Olivares AM, Spiewak AM, Johnson KA, DiBenedetto TA, Kim S, Ackerman LKG, Weix DJ. J Am Chem Soc, 2016, 138: 5016-5019 CrossRef PubMed Google Scholar

[24] Zhao W, Wurz RP, Peters JC, Fu GC. J Am Chem Soc, 2017, 139: 12153-12156 CrossRef PubMed Google Scholar

[25] Mao R, Balon J, Hu X. Angew Chem Int Ed, 2018, 57: 9501-9504 CrossRef PubMed Google Scholar

[26] Mao R, Frey A, Balon J, Hu X. Nat Catal, 2018, 1: 120-126 CrossRef Google Scholar

[27] Liang Y, Zhang X, MacMillan DWC. Nature, 2018, 559: 83-88 CrossRef PubMed ADS Google Scholar

[28] Sakakibara Y, Ito E, Fukushima T, Murakami K, Itami K. Chem Eur J, 2018, 24: 9254-9258 CrossRef PubMed Google Scholar

[29] Barzanò G, Mao R, Garreau M, Waser J, Hu X. Org Lett, 2020, 22: 5412-5416 CrossRef PubMed Google Scholar

[30] Liu C, Wang X, Li Z, Cui L, Li C. J Am Chem Soc, 2015, 137: 9820-9823 CrossRef PubMed Google Scholar

[31] Yatham VR, Bellotti P, König B. Chem Commun, 2019, 55: 3489-3492 CrossRef PubMed Google Scholar

[32] Xu R, Xu T, Yang M, Cao T, Liao S. Nat Commun, 2019, 10: 3752-3758 CrossRef PubMed ADS Google Scholar

[33] Shu X, Xu R, Ma Q, Liao S. Org Chem Front, 2020, 7: 2003-2007 CrossRef Google Scholar

[34] Xu T, Cao T, Yang M, Xu R, Nie X, Liao S. Org Lett, 2020, 22: 3692-3696 CrossRef PubMed Google Scholar

[35] Cao T, Xu T, Xu R, Shu X, Liao S. Nat Commun, 2020, 11: 5340-5347 CrossRef PubMed ADS Google Scholar

[36] Brunner J, Senn H, Richards FM. J Biol Chem, 1980, 255: 3313-3318 CrossRef Google Scholar

[37] Delfino JM, Schreiber SL, Richards FM. J Am Chem Soc, 1993, 115: 3458-3474 CrossRef Google Scholar

[38] Das J. Chem Rev, 2011, 111: 4405-4417 CrossRef PubMed Google Scholar

[39] Chandrachud PP, Wojtas L, Lopchuk JM. J Am Chem Soc, 2020, 142: 21743-21750 CrossRef PubMed Google Scholar

[40] Ragnarsson U. Chem Soc Rev, 2001, 30: 205-213 CrossRef Google Scholar

[41] Barton DHR, Jaszberenyi JC, Theodorakis EA. J Am Chem Soc, 1992, 114: 5904-5905 CrossRef Google Scholar

[42] Schmitz E, Habisch D. Chem Ber, 1962, 95: 680-687 CrossRef Google Scholar

[43] Schneider Y, Prévost J, Gobin M, Legault CY. Org Lett, 2014, 16: 596-599 CrossRef PubMed Google Scholar

[44] Kibriya G, Ghosh D, Hajra A. Sci China Chem, 2020, 63: 42-46 CrossRef Google Scholar

[45] Gale DM, Middleton WJ, Krespan CG. J Am Chem Soc, 1966, 88: 3617-3623 CrossRef Google Scholar

[46] Barton DHR, Ozbalik N, Vacher B. Tetrahedron, 1988, 44: 7385-7392 CrossRef Google Scholar

[47] Barton DHR, Jaszberenyi JC, Theodorakis EA, Reibenspies JH. J Am Chem Soc, 1993, 115: 8050-8059 CrossRef Google Scholar

  • Figure 1

    (a) Known examples: decarboxylative amination to protected amines or hydrazines. (b) This work: divergent decarboxylative amination to access amines and hydrazines (color online).

  • Figure 2

    (a) Imine deprotection to free amines; (b) synthesis of pyrazoles from diaziridines (color online).

  • Figure 3

    Mechanistic study and the influence of the Hantzsch ester groups (color online).

  • Figure 4

    Possible reaction mechanism and pathways for the divergent decarboxylative amination via single or double nitrogen transfer (color online).

  • Table 1   Reaction development for divergent access to imines and diaziridines via single or double nitrogen transfer from diazirine 2 a)

    Entry

    2 (equiv.)

    Reductant

    Solvent

    Light source

    Yield of 3 b)

    Yield of 4 b)

    1 c)

    1.0

    DIPEA (2.0 equiv.)

    DMA

    2 × 18 W blue LED bulbs

    26%

    46%

    2 c)

    1.0

    DIPEA (2.0 equiv.)

    Toluene

    2 × 18 W blue LED bulbs

    40%

    29%

    3 c)

    1.0

    DIPEA (2.0 equiv.)

    t-BuOH

    2 × 18 W blue LED bulbs

    51%

    23%

    4

    1.0

    DIPEA (2.0 equiv.)

    t-BuOH

    2 × 18 W blue LED bulbs

    50%

    28%

    5

    1.0

    DIPEA (0.85 equiv.)

    t-BuOH

    15 W blue LED bulb

    79%

    6%

    6

    1.0

    DIPEA (0.85 equiv.)

    t-BuOH

    Green LED strips, 40 °C

    88%

    5%

    7

    1.2

    HE (1.5 equiv.)

    DME

    24 W blue photo-reactor

    24%

    76%

    8

    1.2

    HE (2.0 equiv.)

    DME

    24 W blue photo-reactor

    11%

    85%

    9

    1.0

    DIPEA (0.85 equiv.)

    t-BuOH

    in dark

    N.P.

    N.P.

    10 d)

    1.0

    DIPEA (0.85 equiv.)

    t-BuOH

    Green LED strips, 40 °C

    N.P.

    N.P.

    11

    1.2

    HE (2.0 equiv.)

    DME

    in dark

    N.P.

    N.P.

    12 d)

    1.2

    HE (2.0 equiv.)

    DME

    24 W blue photo-reactor

    14%

    22%

    Reaction conditions: on 0.05 mmol scale, Eosin Y-Na2 (5 mol%), reductant (DIPEA or HE), and solvent (0.5 mL); b) determined by 19F NMR or GC-MS analysis with (trifluoromethoxy)benzene as an internal standard; c) using 5 mol% of [Ir(ppy)2dtbbpy]PF6 as the photocatalyst; d) without photocatalyst.

  • Table 2   Reaction scope of the decarboxylative amination to imines or amines via single nitrogen transfer from TPD a)

    Reaction conditions: 0.2 mmol scale, in t-BuOH (2 mL), with green LED strips, isolated yield; b) after acidic work-up; c) in situ reaction with NHPI (1.1 equiv.) and DCC (1.1 equiv.).

  • Table 3   Reaction scope of the decarboxylative amination to diaziridines via double nitrogen transfer from TPD a)

    Reaction conditions: 0.2 mmol scale, in DME (2 mL), upon the irradiation of 24 W blue photo-reactor, and all yields represent isolated yields; b) the yield was determined by 19F NMR analysis.

qqqq

Contact and support