logo

The selective deposition of Fe species inside ZSM-5 for the oxidation of cyclohexane to cyclohexanone

More info
  • ReceivedNov 29, 2020
  • AcceptedFeb 24, 2021
  • PublishedMar 8, 2021

Abstract


Funded by

the National Natural Science Foundation of China(21872160,U1832208)

the National Science Fund for Distinguished Young Scholars(21825204)

the National Key R&D Program of China(2017YFA0700101,2018YFB1501602)

the Youth Innovation Promotion Association CAS(2017204)

and Natural Science Foundation of Shanxi Province(201901D211591)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21872160, U1832208), the National Science Fund for Distinguished Young Scholars (21825204), the National Key R&D Program of China (2017YFA0700101 and 2018YFB1501602), the Youth Innovation Promotion Association CAS (2017204), and Natural Science Foundation of Shanxi Province (201901D211591).


Interest statement

The authors declare no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Lee S, Halder A, Ferguson GA, Seifert S, Winans RE, Teschner D, Schlögl R, Papaefthimiou V, Greeley J, Curtiss LA, Vajda S. Nat Commun, 2019, 10: 954 CrossRef PubMed ADS Google Scholar

[2] Yang B, Fu Z, Su A, She J, Chen M, Tang S, Hu W, Zhang C, Liu Y. Appl Catal B-Environ, 2019, 242: 249-257 CrossRef Google Scholar

[3] Shylesh S, Samuel PP, Singh AP. Appl Catal A-General, 2007, 318: 128-136 CrossRef Google Scholar

[4] Huang X, Zhao G, Wang P, Zheng H, Dong W, Wang G. ChemCatChem, 2018, 10: 1406-1413 CrossRef Google Scholar

[5] Wan S, Li M, Zhang Z, Xi H, Yang H, Luo Q, Zhu WH. Sci China Chem, 2020, 63: 1191-1197 CrossRef Google Scholar

[6] Xue K, Yang B, Wu P. Sci China Chem, 2015, 58: 139-147 CrossRef Google Scholar

[7] Shahzeydi A, Ghiaci M, Farrokhpour H, Shahvar A, Sun M, Saraji M. Chem Eng J, 2019, 370: 1310-1321 CrossRef Google Scholar

[8] Wang JY, Zhao FY, Liu RJ, Hu YQ. J Mol Catal A-Chem, 2008, 279: 153-158 CrossRef Google Scholar

[9] Hao J, Wang J, Wang Q, Yu Y, Cai S, Zhao F. Appl Catal A-General, 2009, 368: 29-34 CrossRef Google Scholar

[10] Acharyya SS, Ghosh S, Bal R. Green Chem, 2015, 17: 3490-3499 CrossRef Google Scholar

[11] Sirajuddin S, Rosenzweig AC. Biochemistry, 2015, 54: 2283-2294 CrossRef PubMed Google Scholar

[12] Wang VCC, Maji S, Chen PPY, Lee HK, Yu SSF, Chan SI. Chem Rev, 2017, 117: 8574-8621 CrossRef PubMed Google Scholar

[13] Murahashi S, Oda Y, Naota T. J Am Chem Soc, 1992, 114: 7913-7914 CrossRef Google Scholar

[14] Sun CL, Li BJ, Shi ZJ. Chem Rev, 2011, 111: 1293-1314 CrossRef PubMed Google Scholar

[15] Van-Dúnem V, Carvalho AP, Martins LMDRS, Martins A. ChemCatChem, 2018, 10: 4058-4066 CrossRef Google Scholar

[16] Graça I, Chadwick D. Microporous Mesoporous Mater, 2020, 294: 109873 CrossRef Google Scholar

[17] George SM. Chem Rev, 2010, 110: 111-131 CrossRef PubMed Google Scholar

[18] Ge H, Zhang B, Gu X, Liang H, Yang H, Gao Z, Wang J, Qin Y. Angew Chem Int Ed, 2016, 55: 7081-7085 CrossRef PubMed Google Scholar

[19] Zhang B, Qin Y. ACS Catal, 2018, 8: 10064-10081 CrossRef Google Scholar

[20] Wu H, Zhang B, Liang H, Zhai L, Wang G, Qin Y. The Innovation, 2020, 1: 100029 CrossRef Google Scholar

[21] Zhang B, Guo XW, Liang H, Ge H, Gu X, Chen S, Yang H, Qin Y. ACS Catal, 2016, 6: 6560-6566 CrossRef Google Scholar

[22] Liang H, Zhang B, Ge H, Gu X, Zhang S, Qin Y. ACS Catal, 2017, 7: 6567-6572 CrossRef Google Scholar

[23] Wang N, Sun Q, Bai R, Li X, Guo G, Yu J. J Am Chem Soc, 2016, 138: 7484-7487 CrossRef PubMed Google Scholar

[24] Iliopoulou EF, Stefanidis SD, Kalogiannis KG, Delimitis A, Lappas AA, Triantafyllidis KS. Appl Catal B-Environ, 2012, 127: 281-290 CrossRef Google Scholar

[25] Yamashita T, Hayes P. Appl Surf Sci, 2008, 254: 2441-2449 CrossRef ADS Google Scholar

[26] Tan P. J Catal, 2016, 338: 21-29 CrossRef Google Scholar

[27] Rostamizadeh M, Yaripour F. Fuel, 2016, 181: 537-546 CrossRef Google Scholar

[28] Zhao Y, Yuan B, Zheng Z, Hao R. J Hazard Mater, 2019, 362: 266-274 CrossRef PubMed Google Scholar

[29] Yan Y, Jiang S, Zhang H, Zhang X. Chem Eng J, 2015, 259: 243-251 CrossRef Google Scholar

[30] Gu X, Zhang B, Liang H, Ge H, Yang H, Qin Y. J Fuel Chem Tech, 2017, 45: 714-722 CrossRef Google Scholar

[31] Long Y, Liu S, Fei Y, Li Q, Deng Y. Sci China Chem, 2017, 60: 964-969 CrossRef Google Scholar

[32] Lin Q, Li J, Ma L, Hao J. Catal Today, 2010, 151: 251-256 CrossRef Google Scholar

[33] Zhang T, Liu J, Wang D, Zhao Z, Wei Y, Cheng K, Jiang G, Duan A. Appl Catal B-Environ, 2014, 148-149: 520-531 CrossRef Google Scholar

[34] Li C. J Catal, 2003, 216: 203-212 CrossRef Google Scholar

[35] Sun K, Fan F, Xia H, Feng Z, Li WX, Li C. J Phys Chem C, 2008, 112: 16036-16041 CrossRef Google Scholar

[36] Hammond C, Hermans I, Dimitratos N. ChemCatChem, 2015, 7: 434-440 CrossRef Google Scholar

[37] Chen J, Draksharapu A, Angelone D, Unjaroen D, Padamati SK, Hage R, Swart M, Duboc C, Browne WR. ACS Catal, 2018, 8: 9665-9674 CrossRef PubMed Google Scholar

[38] Wang X, Zhang Q, Yang S, Wang Y. J Phys Chem B, 2005, 109: 23500-23508 CrossRef PubMed Google Scholar

[39] Zhilinskaya EA, Delahay G, Mauvezin M, Coq B, Aboukaïs A. Langmuir, 2003, 19: 3596-3602 CrossRef Google Scholar

[40] Berrier E, Ovsitser O, Kondratenko E, Schwidder M, Grunert W, Bruckner A. J Catal, 2007, 249: 67-78 CrossRef Google Scholar

[41] Rana BS, Singh B, Kumar R, Verma D, Bhunia MK, Bhaumik A, Sinha AK. J Mater Chem, 2010, 20: 8575 CrossRef Google Scholar

[42] Pérez Vélez R, Ellmers I, Huang H, Bentrup U, Schünemann V, Grünert W, Brückner A. J Catal, 2014, 316: 103-111 CrossRef Google Scholar

[43] Gao F, Zheng Y, Kukkadapu RK, Wang Y, Walter ED, Schwenzer B, Szanyi J, Peden CHF. ACS Catal, 2016, 6: 2939-2954 CrossRef Google Scholar

[44] Esmelindro MC, Oestreicher EG, Márquez-Alvarez H, Dariva C, Egues SMS, Fernandes C, Bortoluzzi AJ, Drago V, Antunes OAC. J InOrg Biochem, 2005, 99: 2054-2061 CrossRef PubMed Google Scholar

[45] Ribeiro APC, Martins LMDRS, Kuznetsov ML, Pombeiro AJL. Organometallics, 2016, 36: 192-198 CrossRef Google Scholar

[46] Zhou L, Xu J, Chen C, Wang F, Li X. J Porous Mater, 2006, 15: 7-12 CrossRef Google Scholar

[47] Wang Y, Zhu J, Li C, Li C, Chen L, Chen M, Wang J. Appl Chem Ind, 2009, 38: 1427–1430. Google Scholar

[48] Bilis G, Christoforidis KC, Deligiannakis Y, Louloudi M. Catal Today, 2010, 157: 101-106 CrossRef Google Scholar

  • Figure 1

    Illustration for deposition of Fe species into the micropores of ZSM-5 (color online).

  • Figure 2

    (a) HRTEM image and (b) EDX mapping of 10FeOx/ZSM-5. (c) HRTEM image of 40FeOx/ZSM-5 (color online).

  • Figure 3

    (a) Fe content and (b) XRD patterns of FeOx/ZSM-5 produced with different FeOx ALD cycle numbers (color online).

  • Figure 4

    (a) Fe 2p, (b) O 1s, (c) Si 2p and d) Al 2p XPS spectra from ZSM-5, 10FeOx/ZSM-5 and 40FeOx/ZSM-5 (color online).

  • Figure 5

    FT-IR spectra of pyridine adsorbed on pure ZSM-5, 10FeOx/ZSM-5 and 40FeOx/ZSM-5 after degassing at (a) 200 °C and (b) 350 °C. (c) Raman spectra (λex=532 nm) of ZSM-5, 10FeOx/ZSM-5 and 40FeOx/ZSM-5. (d) EPR spectra of 10FeOx/ZSM-5 and 40FeOx/ZSM-5 at 25 °C (color online).

  • Figure 6

    (a) Time-on-line profile for the liquid-phase oxidation of cyclohexane by H2O2 over 10FeOx/ZSM-5. Reaction conditions: 0.3 mL cyclohexane, 0.48 mL hydrogen peroxide (30 wt.%), 10 mL acetonitrile, 70 °C. (b) Comparison of selectivity and activity with different catalysts for the oxidation of cyclohexane: 1. 10FeOx/ZSM-5 (ALD); 2. 40FeOx/ZSM-5 (ALD); 3. 0.27 wt.%FeOx/ZSM-5 prepared by an impregnation method; 4. Fe-ZSM-5 (Impregnation, literature) [8]; 5. Fe-ZSM-5-([emim]BF4) [8]; 6. Fe-MCM-41 [47]; 7. FeAPO-5 [46]; 8. FeCl2(Tpm) [Tpm=hydrotris(pyrazol-1-yl)methane] [45]. 9. Fe(III)(BPMP)Cl(μ–O)Fe(III)Cl3 [44]; K: cyclohexanone; A: cyclohexanol (color online).

  • Figure 7

    Reusability of (a) 10FeOx/ZSM-5 and (b) 40FeOx/ZSM-5. (c) In situ UV–vis of H2O2 solvent after sequential addition of 10FeOx/ZSM-5 and cyclohexane. Raman spectra of after sequential addition of H2O2 and cyclohexane onto the surface of (d) 10FeOx/ZSM-5 and (e) 40FeOx/ZSM-5 (color online).

  • Table 1   The physicochemical properties of the samples

    Catalyst

    SBET(m2 g−1)

    Smicro(m2 g−1)

    Smeso(m2 g−1)

    V (cm3 g−1)

    ZSM-5

    369

    311

    58

    0.164

    10FeOx/ZSM-5

    362

    305

    57

    0.162

    20FeOx/ZSM-5

    351

    295

    56

    0.157

    40FeOx/ZSM-5

    349

    293

    56

    0.157

  • Table 2   Catalyst performances of Fe-based catalysts for the oxidation of cyclohexane

    Catalyst

    TOF (h−1)

    Conversion (%)

    Selectivity (%)

    Cyclohexanol

    Cyclohexanone

    ZSM-5

    /

    0.4

    /

    /

    10FeOx/ZSM-5

    5.9

    2.7

    7.5

    92.5

    20FeOx/ZSM-5

    4.6

    2.8

    7.0

    93.0

    30FeOx/ZSM-5

    3.3

    3.1

    5.4

    94.6

    40FeOx/ZSM-5

    2.6

    3.6

    2.9

    97.1

    50FeOx/ZSM-5

    2.1

    3.2

    2.7

    97.3

    10FeOx/Silicalite-1

    3.3

    0.6

    10.5

    89.5

    0.27 wt.%FeOx/ZSM-5

    1.6

    2.1

    15.0

    85.0

qqqq

Contact and support