A non-wetting and conductive polyethylene dioxothiophene hole transport layer for scalable and flexible perovskite solar cells

More info
  • ReceivedDec 15, 2020
  • AcceptedJan 29, 2021
  • PublishedMar 19, 2021


Funded by

the National Natural Science Foundation of China(NSFC)

the National Science Fund for Distinguished Young Scholars(51425304)

NSFC-Guangdong Joint funding



This work was supported by the National Natural Science Foundation of China (NSFC) (5167, 3091, 22005131, U20A20128, 51833004), the National Science Fund for Distinguished Young Scholars (51425304) and NSFC-Guangdong Joint funding, China (U1801256).

Interest statement

The authors declare no conflict of interest.


Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Zhang M, Chen Q, Xue R, Zhan Y, Wang C, Lai J, Yang J, Lin H, Yao J, Li Y, Chen L, Li Y. Nat Commun, 2019, 10: 4593 CrossRef ADS Google Scholar

[2] Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050-6051 CrossRef Google Scholar

[3] Zheng S, Wang G, Liu T, Lou L, Xiao S, Yang S. Sci China Chem, 2019, 62: 800-809 CrossRef Google Scholar

[4] Xue R, Zhang M, Luo D, Chen W, Zhu R, Yang YM, Li Y, Li Y. Sci China Chem, 2020, 63: 987-996 CrossRef Google Scholar

[5] National Renewable Energy Laboratory. Best research-cell efficiencies.www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20190103.pdf (2019). Google Scholar

[6] Li Z, Wu S, Zhang J, Lee KC, Lei H, Lin F, Wang Z, Zhu Z, Jen AKY. Adv Energy Mater, 2020, 10: 2000361 CrossRef Google Scholar

[7] Kim H, Kim JS, Heo JM, Pei M, Park IH, Liu Z, Yun HJ, Park MH, Jeong SH, Kim YH, Park JW, Oveisi E, Nagane S, Sadhanala A, Zhang L, Kweon JJ, Lee SK, Yang H, Jang HM, Friend RH, Loh KP, Nazeeruddin MK, Park NG, Lee TW. Nat Commun, 2020, 11: 3378 CrossRef ADS Google Scholar

[8] Kim YY, Yang T, Suhonen R, Välimäki M, Maaninen T, Kemppainen A, Jeon NJ, Seo J. Adv Sci, 2019, 6: 1802094 CrossRef Google Scholar

[9] Li M, Zuo W, Ricciardulli AG, Yang Y, Liu Y, Wang Q, Wang K, Li G, Saliba M, Di Girolamo D, Abate A, Wang Z. Adv Mater, 2020, 32: 2003422 CrossRef Google Scholar

[10] Lee J, Lee D, Jeong D‐, Park N. Adv Funct Mater, 2019, 29: 1807047 CrossRef Google Scholar

[11] Wu Z, Li P, Zhang Y, Zheng Z. Small Methods, 2018, 2: 1800031 CrossRef Google Scholar

[12] Dai X, Deng Y, Van Brackle CH, Chen S, Rudd PN, Xiao X, Lin Y, Chen B, Huang J. Adv Energy Mater, 2019, 10: 1903108 CrossRef Google Scholar

[13] Heo JH, Lee MH, Han HJ, Patil BR, Yu JS, Im SH. J Mater Chem A, 2016, 4: 1572-1578 CrossRef Google Scholar

[14] Zhang F, Song J, Hu R, Xiang Y, He J, Hao Y, Lian J, Zhang B, Zeng P, Qu J. Small, 2018, 14: 1704007 CrossRef Google Scholar

[15] You J, Hong Z, Yang YM, Chen Q, Cai M, Song TB, Chen CC, Lu S, Liu Y, Zhou H, Yang Y. ACS Nano, 2014, 8: 1674-1680 CrossRef Google Scholar

[16] Ma S, Liu X, Wu Y, Tao Y, Ding Y, Cai M, Dai S, Liu X, Alsaedi A, Hayat T. Sol Energy Mater Sol Cells, 2020, 208: 110379 CrossRef Google Scholar

[17] Hu X, Huang Z, Zhou X, Li P, Wang Y, Huang Z, Su M, Ren W, Li F, Li M, Chen Y, Song Y. Adv Mater, 2017, 29: 1703236 CrossRef Google Scholar

[18] Wang J, Liu Y, Chen X, Chen C, Chen P, Wang Z, Duan Y. ChemPhysChem, 2019, 20: 2580-2586 CrossRef Google Scholar

[19] Wang Q, Chueh CC, Eslamian M, Jen AKY. ACS Appl Mater Interfaces, 2016, 8: 32068-32076 CrossRef Google Scholar

[20] Fan X, Nie W, Tsai H, Wang N, Huang H, Cheng Y, Wen R, Ma L, Yan F, Xia Y. Adv Sci, 2019, 6: 1900813 CrossRef Google Scholar

[21] Zhao Q, Jamal R, Zhang L, Wang M, Abdiryim T. Nanoscale Res Lett, 2014, 9: 557 CrossRef Google Scholar

[22] Im SG, Gleason KK. Macromolecules, 2007, 40: 6552-6556 CrossRef ADS Google Scholar

[23] Crispin X, Jakobsson FLE, Crispin A, Grim PCM, Andersson P, Volodin A, van Haesendonck C, Van der Auweraer M, Salaneck WR, Berggren M. Chem Mater, 2006, 18: 4354-4360 CrossRef Google Scholar

[24] Lee SH, Park H, Kim S, Son W, Cheong IW, Kim JH. J Mater Chem A, 2014, 2: 7288-7294 CrossRef Google Scholar

[25] Chen K, Hu Q, Liu T, Zhao L, Luo D, Wu J, Zhang Y, Zhang W, Liu F, Russell TP, Zhu R, Gong Q. Adv Mater, 2016, 28: 10718-10724 CrossRef Google Scholar

[26] Kim N, Kee S, Lee SH, Lee BH, Kahng YH, Jo YR, Kim BJ, Lee K. Adv Mater, 2014, 26: 2268-2272 CrossRef Google Scholar

[27] Tee BCK, Ouyang J. Adv Mater, 2018, 30: 1802560 CrossRef Google Scholar

[28] Bi C, Wang Q, Shao Y, Yuan Y, Xiao Z, Huang J. Nat Commun, 2015, 6: 7747 CrossRef ADS Google Scholar

[29] Chen MC, Chiou YS, Chiu JM, Tedla A, Tai Y. J Mater Chem A, 2013, 1: 3680-3687 CrossRef Google Scholar

[30] Zhou Z, Li X, Cai M, Xie F, Wu Y, Lan Z, Yang X, Qiang Y, Islam A, Han L. Adv Energy Mater, 2017, 7: 1700763 CrossRef Google Scholar

[31] Zuo C, Ding L. Adv Energy Mater, 2016, 7: 1601193 CrossRef Google Scholar

[32] Hörantner MT, Zhang W, Saliba M, Wojciechowski K, Snaith HJ. Energy Environ Sci, 2015, 8: 2041-2047 CrossRef Google Scholar

[33] Huang F, Li M, Siffalovic P, Cao G, Tian J. Energy Environ Sci, 2019, 12: 518-549 CrossRef Google Scholar

[34] Hu H, Ren Z, Fong PWK, Qin M, Liu D, Lei D, Lu X, Li G. Adv Funct Mater, 2019, 29: 1900092 CrossRef Google Scholar

[35] Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ. Science, 2013, 342: 341-344 CrossRef ADS Google Scholar

[36] Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345: 542-546 CrossRef ADS Google Scholar

[37] de Quilettes DW, Vorpahl SM, Stranks SD, Nagaoka H, Eperon GE, Ziffer ME, Snaith HJ, Ginger DS. Science, 2015, 348: 683-686 CrossRef ADS Google Scholar

[38] Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Science, 2015, 347: 967-970 CrossRef ADS Google Scholar

[39] Yip HL, Xue Q, Sun C, Zhang K, Huang F, Cao Y. Progress in Electromagnetic Research Symp (PIERS). Shanghai, 2016. Google Scholar

[40] Hou Y, Zhang H, Chen W, Chen S, Quiroz COR, Azimi H, Osvet A, Matt GJ, Zeira E, Seuring J, Kausch-Busies N, Lövenich W, Brabec CJ. Adv Energy Mater, 2015, 5: 1500543 CrossRef Google Scholar

[41] Chang CY, Huang WK, Chang YC, Lee KT, Chen CT. J Mater Chem A, 2016, 4: 640-648 CrossRef Google Scholar

[42] Zhao B, Abdi-Jalebi M, Tabachnyk M, Glass H, Kamboj VS, Nie W, Pearson AJ, Puttisong Y, Gödel KC, Beere HE, Ritchie DA, Mohite AD, Dutton SE, Friend RH, Sadhanala A. Adv Mater, 2016, 29: 1604744 CrossRef Google Scholar

[43] Zhao D, Sexton M, Park HY, Baure G, Nino JC, So F. Adv Energy Mater, 2014, 5: 1401855 CrossRef Google Scholar

[44] Azmi R, Hadmojo WT, Sinaga S, Lee CL, Yoon SC, Jung IH, Jang SY. Adv Energy Mater, 2018, 8: 1701683 CrossRef Google Scholar

[45] Chen H, Fu W, Huang C, Zhang Z, Li S, Ding F, Shi M, Li CZ, Jen AKY, Chen H. Adv Energy Mater, 2017, 7: 1700012 CrossRef Google Scholar

[46] Jokar E, Chien CH, Fathi A, Rameez M, Chang YH, Diau EWG. Energy Environ Sci, 2018, 11: 2353-2362 CrossRef Google Scholar

[47] Jiang J, Wang Q, Jin Z, Zhang X, Lei J, Bin H, Zhang ZG, Li Y, Liu SF. Adv Energy Mater, 2018, 8: 1701757 CrossRef Google Scholar

[48] Wei D, Ma F, Wang R, Dou S, Cui P, Huang H, Ji J, Jia E, Jia X, Sajid S, Elseman AM, Chu L, Li Y, Jiang B, Qiao J, Yuan Y, Li M. Adv Mater, 2018, 30: 1707583 CrossRef Google Scholar

[49] Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A, Shield J, Huang J. Energy Environ Sci, 2016, 9: 1752-1759 CrossRef Google Scholar

  • Figure 1

    Diagram of synthesis process and optical performance. (a) Synthesis of Oil-PEDOT by free-radical polymerization in nitrogen atmosphere (here BPO is benzoyl peroxide, PTSA is p-toluenesulfonic acid, SBS is poly(styrene-co-butadiene) and EDOT is 3,4-ethoxythiophene, respectively). (b) Chemical structures of the Oil-PEDOT. (c) Schematic illustration of meniscus-coating (here hc-PEDOT:PSS is high conductivity PEDOT:PSS). (d) Transmittance of Oil-PEDOT and PEDOT:PSS films. (e) Ohmic behavior of Oil-PEDOT and PEDOT:PSS films. (f) Energy band alignment in perovskite solar cells (color online).

  • Figure 2

    Quality and morphology analysis of Oil-PEDOT and PEDOT:PSS. (a) Fourier-transform infrared spectra represent of Oil-PEDOT film. (b, c) XPS spectra of S 2p. (d) Raman spectra. (e, f) GIWAXS patterns. (g, h) AFM characterizations. (i, j) The contact angle analysis. (k, l) The optical microscope image of fluid level diffusion (color online).

  • Figure 3

    Morphology and quality analysis of perovskite films. SEM image of perovskite film based on (a) PEDOT:PSS and (b) Oil-PEDOT HTLs. (c) XRD pattern of perovskite films based on PEDOT:PSS and Oil-PEDOT HTLs. 2D-GIWAXS patterns of perovskite films based on (d) PEDOT:PSS and (e) Oil-PEDOT HTLs. (f) LaMer curve exhibit perovskite of nucleation and growth based on PEDOT:PSS and Oil-PEDOT HTLs. (g) Absorbance and PL spectra of perovskite films based on PEDOT:PSS and Oil-PEDOT HTLs. (h) TRPL spectra of perovskite films based on PEDOT:PSS and Oil-PEDOT HTLs. (i) Crystalline reproducibility of (110) lattice plane based on 5 cm×5 cm perovskite films with PEDOT:PSS or Oil-PEDOT HTL (here different colors stand for the peak intensity of (110) orientation at different positions on the perovskite film) (color online).

  • Figure 4

    Performance of flexible PSCs. (a) Structure of flexible PSCs based on Oil-PEDOT HTL. (b) The images of flexible PSCs. (c) J-V curves of flexible PSCs based on PEDOT:PSS and Oil-PEDOT HTLs. (d) IPCE spectra. (e) The stabilized output power and photocurrent of flexible PSCs based on Oil-PEDOT HTL. (f) PCE distribution of flexible PSCs based on the Oil-PEDOT HTL. (g) The structure of flexible perovskite solar module. (h) The photograph of flexible perovskite solar modules. (i) J-V curve of flexible perovskite solar module based on Oil-PEDOT HTL (color online).

  • Figure 5

    Mechanical stability of flexible PSCs. (a) Normalized PCE measured of flexible PSCs after bending 100 cycles within curvature radius from flat to 2 mm. (b) Normalized PCE measured of flexible PSCs after bending 7,000 cycles with a curvature radius of 2 mm. (c) The long-term stability characterization of corresponding device based on different HTLs and stored in air. ToF-SIMS elemental depth measured of flexible PSCs based on different HTL of (d) PEDOT:PSS and (e) Oil-PEDOT (color online).

  • Table 1   Summarized photovoltaic parameters for devices with Oil-PEDOT or PEDOT:PSS HTL

    Hole transports layer

    Scan direction

    JSC(mA cm−2)

    VOC (V)

    FF (%)

    PCE (%)

    Integrated JSC (mA cm−2)


























Contact and support