Concentrated hydrogel electrolyte for integrated supercapacitor with high capacitance at subzero temperature

More info
  • ReceivedNov 22, 2020
  • AcceptedJan 29, 2021
  • PublishedMar 29, 2021



Major Science and Technology Projects of Heilongjiang Province(2019ZX09A01)

the National Key Technology R&D Program(2017YFB1401805)


This work was supported by the Major Science and Technology Projects of Heilongjiang Province (2019ZX09A01) and the National Key Technology R&D Program (2017YFB1401805).

Interest statement

The authors declare no conflict of interest.

Supplementary data

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Xu J, Yuan N, Razal JM, Zheng Y, Zhou X, Ding J, Cho K, Ge S, Zhang R, Gogotsi Y, Baughman RH. Energy Storage Mater, 2019, 22323-329 CrossRef Google Scholar

[2] Yang Y, Ng SW, Chen D, Chang J, Wang D, Shang J, Huang Q, Deng Y, Zheng Z. Small, 2019, 151902071 CrossRef PubMed Google Scholar

[3] Lin Y, Zhang H, Liao H, Zhao Y, Li K. Chem Eng J, 2019, 367139-148 CrossRef Google Scholar

[4] Zhou Y, Wang CH, Lu W, Dai L. Adv Mater, 2020, 321902779 CrossRef PubMed Google Scholar

[5] Yang C, Pan Q, Jia Q, Xin Y, Qi W, Wei H, Yang S, Cao B. Appl Surf Sci, 2020, 502144423 CrossRef ADS Google Scholar

[6] Lv T, Liu M, Zhu D, Gan L, Chen T. Adv Mater, 2018, 301705489 CrossRef PubMed Google Scholar

[7] Mo F, Liang G, Meng Q, Liu Z, Li H, Fan J, Zhi C. Energy Environ Sci, 2019, 12706-715 CrossRef Google Scholar

[8] Sui X, Guo H, Chen P, Zhu Y, Wen C, Gao Y, Yang J, Zhang X, Zhang L. Adv Funct Mater, 2020, 301907986 CrossRef Google Scholar

[9] Jiang H, Shin W, Ma L, Hong JJ, Wei Z, Liu Y, Zhang S, Wu X, Xu Y, Guo Q, Subramanian MA, Stickle WF, Wu T, Lu J, Ji X. Adv Energy Mater, 2020, 102000968 CrossRef Google Scholar

[10] Peng X, Liu H, Yin Q, Wu J, Chen P, Zhang G, Liu G, Wu C, Xie Y. Nat Commun, 2016, 711782 CrossRef PubMed ADS Google Scholar

[11] Xu J, Wang X, Zhou X, Yuan N, Ge S, Ding J. Electrochim Acta, 2019, 301478-486 CrossRef Google Scholar

[12] Lang J, Zhang X, Liu L, Yang B, Yang J, Yan X. J Power Sources, 2019, 423271-279 CrossRef ADS Google Scholar

[13] Wu QL, Zhao SX, Yu L, Zheng XX, Wang YF, Yu LQ, Nan CW, Cao G. J Mater Chem A, 2019, 713205-13214 CrossRef Google Scholar

[14] Jin X, Zhang G, Sun G, Yang H, Xiao Y, Gao J, Zhang Z, Jiang L, Qu L. Nano Energy, 2019, 64103938 CrossRef Google Scholar

[15] Rong Q, Lei W, Huang J, Liu M. Adv Energy Mater, 2018, 81801967 CrossRef Google Scholar

[16] Wu J, Wu Z, Lu X, Han S, Yang BR, Gui X, Tao K, Miao J, Liu C. ACS Appl Mater Interfaces, 2019, 119405-9414 CrossRef PubMed Google Scholar

[17] Hu C, Zhang Y, Wang X, Xing L, Shi L, Ran R. ACS Appl Mater Interfaces, 2018, 1044000-44010 CrossRef PubMed Google Scholar

[18] Nian Q, Wang J, Liu S, Sun T, Zheng S, Zhang Y, Tao Z, Chen J. Angew Chem Int Ed, 2019, 5816994-16999 CrossRef PubMed Google Scholar

[19] Pei Z, Yuan Z, Wang C, Zhao S, Fei J, Wei L, Chen J, Wang C, Qi R, Liu Z, Chen Y. Angew Chem Int Ed, 2020, 594793-4799 CrossRef PubMed Google Scholar

[20] Abbas Q, Béguin F. J Power Sources, 2016, 318235-241 CrossRef ADS Google Scholar

[21] Liu Z, Zhang J, Liu J, Long Y, Fang L, Wang Q, Liu T. J Mater Chem A, 2020, 86219-6228 CrossRef Google Scholar

[22] Zhang XF, Ma X, Hou T, Guo K, Yin J, Wang Z, Shu L, He M, Yao J. Angew Chem Int Ed, 2019, 587366-7370 CrossRef PubMed Google Scholar

[23] Morelle XP, Illeperuma WR, Tian K, Bai R, Suo Z, Vlassak JJ. Adv Mater, 2018, 301801541 CrossRef PubMed Google Scholar

[24] Lu X, Yu M, Wang G, Tong Y, Li Y. Energy Environ Sci, 2014, 72160 CrossRef Google Scholar

[25] Wang K, Zhang X, Li C, Sun X, Meng Q, Ma Y, Wei Z. Adv Mater, 2015, 277451-7457 CrossRef PubMed Google Scholar

[26] Wang Y, Lv C, Ji G, Hu R, Zheng J. J Mater Chem A, 2020, 88255-8261 CrossRef Google Scholar

[27] Kumar A, Mishra R, Reinwald Y, Bhat S. Mater Today, 2010, 1342-44 CrossRef Google Scholar

[28] Su L, Gong L, Lü H, Xü Q. J Power Sources, 2014, 248212-217 CrossRef ADS Google Scholar

[29] Zhang H, Xia H, Zhao Y. ACS Macro Lett, 2012, 11233-1236 CrossRef Google Scholar

[30] Bai Y, Liu R, Wang Y, Xiao H, Liu Y, Yuan G. ACS Appl Mater Interfaces, 2019, 1143294-43302 CrossRef PubMed Google Scholar

[31] Knopf DA, Luo BP, Krieger UK, Koop T. J Phys Chem A, 2003, 1074322-4332 CrossRef Google Scholar

[32] Mund C, Zellner R. ChemPhysChem, 2003, 4638-645 CrossRef PubMed Google Scholar

[33] Chu X, Huang H, Zhang H, Zhang H, Gu B, Su H, Liu F, Han Y, Wang Z, Chen N, Yan C, Deng W, Deng W, Yang W. Electrochim Acta, 2019, 301136-144 CrossRef Google Scholar

[34] Lai F, Feng J, Yan R, Wang GC, Antonietti M, Oschatz M. Adv Funct Mater, 2018, 281801298 CrossRef Google Scholar

[35] Zhao S, Dong L, Sun B, Yan K, Zhang J, Wan S, He F, Munroe P, Notten PHL, Wang G. Small, 2020, 161906131 CrossRef PubMed Google Scholar

[36] Wang J, Polleux J, Lim J, Dunn B. J Phys Chem C, 2007, 11114925-14931 CrossRef Google Scholar

[37] Brezesinski T, Wang J, Tolbert SH, Dunn B. Nat Mater, 2010, 9146-151 CrossRef PubMed ADS Google Scholar

[38] Li K, Wang X, Li S, Urbankowski P, Li J, Xu Y, Gogotsi Y. Small, 2020, 161906851 CrossRef PubMed Google Scholar

[39] Chen S, Zhang Y, Geng H, Yang Y, Rui X, Li CC. J Power Sources, 2019, 441227192 CrossRef ADS Google Scholar

[40] Wang Y, Wang X, Li X, Bai Y, Xiao H, Liu Y, Liu R, Yuan G. Adv Funct Mater, 2019, 291900326 CrossRef Google Scholar

[41] Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y. Adv Funct Mater, 2017, 271701264 CrossRef Google Scholar

  • Figure 1

    (a) Tensile stress-strain curves of PVA and f-PVA; (b) tensile stress-strain curves of f-PVA1, f-PVA2, and f-PVA3 hydrogels; (c) flexibility of f-PVA, f-PVA1, f-PVA2, and f-PVA3 at RT, −40 °C, and bending state at −40 °C; (d) mechanical properties of f-PVA3 after freezing at −40 °C for 24 h (color online).

  • Figure 2

    (a) DSC for f-PVA3; (b) temperature-dependent ionic conductivity (the inset shows f-PVA3 gel serves as a conductor to connect an LED circuit); (c, d) relationship between Z′ and ω−1/2 (color online).

  • Figure 3

    SEM images of PANi-f-PVA3 (a) surface and (b) cross-section. (c) FT-IR spectra. Electrochemical performance: (d) CV curves at a scan rate of 1 mV s−1 at RT; (e) CV curves of PANi-f-PVA3 at 1 mV s−1 at different temperatures; (f) CV curves at a sweep rate of 50 mV s−1 at −40 °C. (g) Rate performance of PANi-f-PVA3 at different temperatures. (h) Ragone plots. (i) Nyquist plots (color online).

  • Figure 4

    (a) b-values against the voltage at −40 °C; (b) capacitive contribution at −40 °C under different sweep rates; (c) capacitive contribution at −40 °C; (d) capacitive contribution at RT; (e) q−1 vs. v1/2; (f) q vs. v−1/2 (color online).

  • Figure 5

    (a) CV curves at 30 mV s−1 after bending multiple times; (b) CV curves at 50 mV s−1 under different bending angles; (c) CV curves at 30 mV s−1 before and after hammered; (d) cycle stability (inset is a digital graphe of LED powered by four units devise) (color online).


Contact and support