logo

Successive magnetic ordering in two CoII-ladder metal-organic frameworks

More info
  • ReceivedJun 29, 2020
  • AcceptedAug 4, 2020
  • PublishedDec 2, 2020

Abstract


Funded by

the National Natural Science Foundation of China(21871262,21805257,21901242)

the Natural Science Foundation of Fujian Province(2019J01130)

the Recruitment Program of Global Youth Experts.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21871262, 21805257, 21901242), the Natural Science Foundation of Fujian Province (2019J01130) and the Recruitment Program of Global Youth Experts. We are greatful Dr. S. Q. Wu for technical assistance and discussion.


Interest statement

The authors declare no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Chen S, Büttner H, Voit J. Phys Rev Lett, 2001, 87: 087205 CrossRef ADS arXiv Google Scholar

[2] Yamaguchi H, Iwase K, Ono T, Shimokawa T, Nakano H, Shimura Y, Kase N, Kittaka S, Sakakibara T, Kawakami T, Hosokoshi Y. Phys Rev Lett, 2013, 110: 157205 CrossRef ADS Google Scholar

[3] Nath R, Ranjith KM, Roy B, Johnston DC, Furukawa Y, Tsirlin AA. Phys Rev B, 2014, 90: 024431 CrossRef ADS arXiv Google Scholar

[4] Lai KT, Adler P, Prots Y, Hu Z, Kuo CY, Pi TW, Valldor M. Inorg Chem, 2017, 56: 12606-12614 CrossRef Google Scholar

[5] Humphrey SM, Wood PT. J Am Chem Soc, 2004, 126: 13236-13237 CrossRef Google Scholar

[6] Kageyama H, Watanabe T, Tsujimoto Y, Kitada A, Sumida Y, Kanamori K, Yoshimura K, Hayashi N, Muranaka S, Takano M, Ceretti M, Paulus W, Ritter C, André G. Angew Chem Int Ed, 2008, 47: 5740-5745 CrossRef Google Scholar

[7] Honda Z, Katsumata K, Kikkawa A, Yamada K. Phys Rev Lett, 2005, 95: 087204 CrossRef ADS Google Scholar

[8] Dublenych YI. Phys Rev B, 2016, 93: 054415 CrossRef ADS Google Scholar

[9] Haldane FDM. Phys Rev B, 1982, 25: 4925-4928 CrossRef ADS Google Scholar

[10] Haldane FDM. Phys Rev B, 1982, 26: 5257 CrossRef ADS Google Scholar

[11] Peschke M, Woelk LM, Potthoff M. Phys Rev B, 2019, 99: 085140 CrossRef ADS arXiv Google Scholar

[12] Kurmoo M. Chem Soc Rev, 2009, 38: 1353-1379 CrossRef Google Scholar

[13] Abragam A, Bleaney B. Electron Paramagnetic Resonance of Transitional Ions. Abingdon: Taylor Francis, 1970:. Google Scholar

[14] Lines ME. Phys Rev, 1963, 131: 546-555 CrossRef ADS Google Scholar

[15] Carlin RL. Magnetochemistry. Heidelberg: Springer,1986:. Google Scholar

[16] Zhang ZC, Gao S, Zheng LM. Dalton Trans, 2007, 41): 4681-4684 CrossRef Google Scholar

[17] Lai KT, Valldor M. Sci Rep, 2017, 7: 43767 CrossRef ADS Google Scholar

[18] Kang J, Lee Y, Kim S, et al. Korean Chem Soc, 2014, 35. Google Scholar

[19] Kawata S, Kitagawa S, Kumagai H, Ishiyama T, Honda K, Tobita H, Adachi K, Katada M. Chem Mater, 1998, 10: 3902-3912 CrossRef Google Scholar

[20] Price DJ, Powell AK, Wood PT. J Chem Soc Dalton Trans, 2000, 20): 3566-3569 CrossRef Google Scholar

[21] Huang YG, Jiang FL, Hong MC. Coord Chem Rev, 2009, 253: 2814-2834 CrossRef Google Scholar

[22] Huang YG, Wang XT, Jiang FL, Gao S, Wu MY, Gao Q, Wei W, Hong MC. Chem Eur J, 2008, 14: 10340-10347 CrossRef Google Scholar

[23] Huang YG, Yuan DQ, Pan L, Jiang FL, Wu MY, Zhang XD, Wei XD, Gao Q, Lee JY, Li J, Hong MC. Inorg Chem, 2007, 46: 9609-9615 CrossRef Google Scholar

[24] Huang YG, Wu SQ, Deng WH, Xu G, Hu FL, Hill JP, Wei W, Su SQ, Shrestha LK, Sato O, Wu MY, Hong MC, Ariga K. Adv Mater, 2017, 29: 1703301 CrossRef Google Scholar

[25] Spek AL. Platon, A Multipurpose Crystallographic Tool. Utrecht: Utrecht University, 2001. Google Scholar

[26] Myers AL, Prausnitz JM. AIChE J, 1965, 11: 121-127 CrossRef Google Scholar

[27] Li JR, Ma Y, McCarthy MC, Sculley J, Yu J, Jeong HK, Balbuena PB, Zhou HC. Coord Chem Rev, 2011, 255: 1791-1823 CrossRef Google Scholar

[28] Chen KJ, Madden DG, Pham T, Forrest KA, Kumar A, Yang QY, Xue W, Space B, Perry Iv JJ, Zhang JP, Chen XM, Zaworotko MJ. Angew Chem Int Ed, 2016, 55: 10268-10272 CrossRef Google Scholar

[29] Demessence A, D’Alessandro DM, Foo ML, Long JR. J Am Chem Soc, 2009, 131: 8784-8786 CrossRef Google Scholar

[30] Lin RB, Xiang S, Zhou W, Chen B. Chem, 2020, 6: 337-363 CrossRef Google Scholar

[31] Li JR, Yu J, Lu W, Sun LB, Sculley J, Balbuena PB, Zhou HC. Nat Commun, 2013, 4: 1538 CrossRef ADS Google Scholar

[32] Mason JA, Sumida K, Herm ZR, Krishna R, Long JR. Energy Environ Sci, 2011, 4: 3030-3040 CrossRef Google Scholar

[33] Guo P, Chu Q, Gong N, Yan X, Liu B. J Solid State Chem, 2020, 287: 121345 CrossRef ADS Google Scholar

[34] Tang FS, Lin RB, Lin RG, Zhao JCG, Chen B. J Solid State Chem, 2018, 258: 346-350 CrossRef ADS Google Scholar

[35] Bloch WM, Babarao R, Hill MR, Doonan CJ, Sumby CJ. J Am Chem Soc, 2013, 135: 10441-10448 CrossRef Google Scholar

[36] Cheng XN, Zhang WX, Chen XM. J Am Chem Soc, 2007, 129: 15738-15739 CrossRef Google Scholar

[37] Palii AV, Reu OS, Ostrovsky SM, Klokishner SI, Tsukerblat BS, Sun ZM, Mao JG, Prosvirin AV, Zhao HH, Dunbar KR. J Am Chem Soc, 2008, 130: 14729-14738 CrossRef Google Scholar

[38] Zeng MH, Zhang WX, Sun XZ, Chen XM. Angew Chem Int Ed, 2005, 44: 3079-3082 CrossRef Google Scholar

[39] Tang Y, Peng C, Guo W, Wang J, Su G, He Z. J Am Chem Soc, 2017, 139: 14057-14060 CrossRef Google Scholar

[40] Bera AK, Yusuf SM, Banerjee S. Solid State Sci, 2013, 16: 57-64 CrossRef ADS arXiv Google Scholar

[41] Oka Y, Inoue K, Kumagai H, Kurmoo M. Inorg Chem, 2013, 52: 2142-2149 CrossRef Google Scholar

[42] Peçanha-Antonio V, Feng E, Sun X, Adroja D, Walker HC, Gibbs AS, Orlandi F, Su Y, Brückel T. Phys Rev B, 2019, 99: 134415 CrossRef ADS arXiv Google Scholar

[43] Chorazy S, Rams M, Wyczesany M, Nakabayashi K, Ohkoshi S, Sieklucka B. CrystEngComm, 2018, 20: 1271-1281 CrossRef Google Scholar

[44] Cassidy SJ, Orlandi F, Manuel P, Hadermann J, Scrimshire A, Bingham PA, Clarke SJ. Inorg Chem, 2018, 57: 10312-10322 CrossRef Google Scholar

[45] Li B, Li Z, Wei R, Yu F, Chen X, Xie Y, Zhang T, Tao J. Inorg Chem, 2015, 54: 3331-3336 CrossRef Google Scholar

[46] Sankar R, Muthuselvam IP, Babu KR, Murugan GS, Rajagopal K, Kumar R, Wu TC, Wen CY, Lee WL, Guo GY, Chou FC. Inorg Chem, 2019, 58: 11730-11737 CrossRef Google Scholar

[47] Zhang YZ, Zhao HH, Funck E, Dunbar KR. Angew Chem Int Ed, 2015, 54: 5583-5587 CrossRef Google Scholar

  • Figure 1

    The structures and geometries of ox2− brigded CoII-ladders in compound 1 symmetric zigzag ladder (a), 2 necklace ladder (b), and 3 spiraling zigzag ladder (c) (color online).

  • Figure 2

    (a) CO2 and N2, and (b) CH4 and C2H4 sorption data at 273 and 298 K for compound 1. The temperatures were maintained by Dewar thermos bottle kept ice water and 298 K water, respectively (color online).

  • Figure 3

    (a) Temperature dependence of the in-phase and (b) out-of-phase component of the ac magnetic susceptibility of compound 1 under 3 Oe ac field and 0 Oe dc field; (c) plots of temperature dependence of FC and ZFC susceptibilities of compound 1 under a 50 Oe dc field; (d) specific heat of compound 1 as a function of temperature (color online).

  • Figure 4

    (a) Temperature dependence of the in-phase, and (b) out-of-phase component of the ac magnetic susceptibility of compound 2 under 3 Oe ac field and 0 Oe dc field; (c) plots of temperature dependence of FC and ZFC susceptibilities of compound 2 under a 50 Oe dc field; (d) specific heat of compound 2 as a function of temperature (color online).

  • Figure 5

    (a) Magnetization (M) vs. applied field (H) for compound 1 at 2, 10, 15, and 20 K; (b) the magnetic hysteresis loop of compound 1 at 2 K, and (c) at 10 K; (d) magnetization (M) vs. applied field (H) for compound 2 at 2 and 5 K (color online).