logo

SCIENCE CHINA Chemistry, Volume 63 , Issue 10 : 1352-1366(2020) https://doi.org/10.1007/s11426-020-9799-4

A-DA′D-A non-fullerene acceptors for high-performance organic solar cells

More info
  • ReceivedApr 30, 2020
  • AcceptedJun 23, 2020
  • PublishedJul 17, 2020

Abstract


Funded by

the National Natural Science Foundation of China(21875286)

the National Key Research and Development Program of China(2017YFA0206600)

the Science Fund for Distinguished Young Scholars of Hunan Province(2017JJ1029)

and the Natural Sciences and Engineering Research Council of Canada.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21875286), the National Key Research and Development Program of China (2017YFA0206600), the Science Fund for Distinguished Young Scholars of Hunan Province (2017JJ1029) and the Natural Sciences and Engineering Research Council of Canada.


Interest statement

The authors declare no conflict of interest.


References

[1] Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789-1791 CrossRef ADS Google Scholar

[2] Zhang Z, Yuan J, Wei Q, Zou Y. Front Chem, 2018, 6: 414 CrossRef ADS Google Scholar

[3] Li G, Zhu R, Yang Y. Nat Photon, 2012, 6: 153-161 CrossRef ADS Google Scholar

[4] Li C, Liu M, Pschirer NG, Baumgarten M, Müllen K. Chem Rev, 2010, 110: 6817-6855 CrossRef Google Scholar

[5] Li Y, Zou Y. Adv Mater, 2008, 20: 2952-2958 CrossRef Google Scholar

[6] Liu W, Zhang J, Xu S, Zhu X. Sci Bull, 2019, 64: 1144-1147 CrossRef Google Scholar

[7] Chen S, Tsang SW, Lai TH, Reynolds JR, So F. Adv Mater, 2014, 26: 6125-6131 CrossRef Google Scholar

[8] Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L. Chem Rev, 2015, 115: 12666-12731 CrossRef Google Scholar

[9] Best Research-Cell Efficiency Chart, NREL. http://www.nrel.gov/pv/cell-efficiency.html. Google Scholar

[10] Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094-1098 CrossRef ADS Google Scholar

[11] Li CZ, Yip HL, Jen AKY. J Mater Chem, 2012, 22: 4161-4177 CrossRef Google Scholar

[12] Xiao Z, Ye G, Liu Y, Chen S, Peng Q, Zuo Q, Ding L. Angew Chem Int Ed, 2012, 51: 9038-9041 CrossRef Google Scholar

[13] Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170-1174 CrossRef Google Scholar

[14] Jia B, Wang J, Wu Y, Zhang M, Jiang Y, Tang Z, Russell TP, Zhan X. J Am Chem Soc, 2019, 141: 19023-19031 CrossRef Google Scholar

[15] Li S, Ye L, Zhao W, Yan H, Yang B, Liu D, Li W, Ade H, Hou J. J Am Chem Soc, 2018, 140: 7159-7167 CrossRef Google Scholar

[16] Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140-1151 CrossRef Google Scholar

[17] Zhang M, Guo X, Ma W, Ade H, Hou J. Adv Mater, 2015, 27: 4655-4660 CrossRef Google Scholar

[18] Li P, Wang Z, Song C, Zhang H. J Mater Chem C, 2017, 5: 11454-11465 CrossRef Google Scholar

[19] Zhang Y, Zou J, Yip HL, Sun Y, Davies JA, Chen KS, Acton O, Jen AKY. J Mater Chem, 2011, 21: 3895-3902 CrossRef Google Scholar

[20] Dyer-Smith C, Howard IA, Cabanetos C, El Labban A, Beaujuge PM, Laquai F. Adv Energy Mater, 2015, 5: 1401778 CrossRef Google Scholar

[21] Liu S, Yuan J, Deng W, Luo M, Xie Y, Liang Q, Zou Y, He Z, Wu H, Cao Y. Nat Photon, 2020, 14: 300-305 CrossRef ADS Google Scholar

[22] Feng L, Yuan J, Zhang Z, Peng H, Zhang ZG, Xu S, Liu Y, Li Y, Zou Y. ACS Appl Mater Interfaces, 2017, 9: 31985-31992 CrossRef Google Scholar

[23] Xu S, Feng L, Yuan J, Zhang ZG, Li Y, Peng H, Zou Y. ACS Appl Mater Interfaces, 2017, 9: 18816-18825 CrossRef Google Scholar

[24] Yuan J, Huang T, Cheng P, Zou Y, Zhang H, Yang JL, Chang SY, Zhang Z, Huang W, Wang R, Meng D, Gao F, Yang Y. Nat Commun, 2019, 10: 570 CrossRef ADS Google Scholar

[25] Zhou H, Yang L, You W. Macromolecules, 2012, 45: 607-632 CrossRef ADS Google Scholar

[26] Li S, Li CZ, Shi M, Chen H. ACS Energy Lett, 2020, 5: 1554-1567 CrossRef Google Scholar

[27] Zhou Z, Liu W, Zhou G, Zhang M, Qian D, Zhang J, Chen S, Xu S, Yang C, Gao F, Zhu H, Liu F, Zhu X. Adv Mater, 2019, 32: 1906324 CrossRef Google Scholar

[28] Luo M, Zhou L, Yuan J, Zhu C, Cai F, Hai J, Zou Y. J Energy Chem, 2020, 42: 169-173 CrossRef Google Scholar

[29] Yuan J, Zhang Y, Zhou L, Zhang C, Lau T‐, Zhang G, Lu X, Yip H‐, So SK, Beaupré S, Mainville M, Johnson PA, Leclerc M, Chen H, Peng H, Li Y, Zou Y. Adv Mater, 2019, 31: 1807577 CrossRef Google Scholar

[30] Wang R, Yuan J, Wang R, Han G, Huang T, Huang W, Xue J, Wang H, Zhang C, Zhu C, Cheng P, Meng D, Yi Y, Wei K, Zou Y, Yang Y. Adv Mater, 2019, 31: 1904215 CrossRef Google Scholar

[31] Luo M, Zhu C, Yuan J, Zhou L, Keshtov ML, Godovsky DY, Zou Y. Chin Chem Lett, 2019, 30: 2343-2346 CrossRef Google Scholar

[32] Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng J, Wei Z, Gao F, Hou J. Nat Commun, 2019, 10: 2515 CrossRef ADS Google Scholar

[33] Jiang K, Wei Q, Lai JYL, Peng Z, Kim HK, Yuan J, Ye L, Ade H, Zou Y, Yan H. Joule, 2019, 3: 3020-3033 CrossRef Google Scholar

[34] Luo Z, Sun R, Zhong C, Liu T, Zhang G, Zou Y, Jiao X, Min J, Yang C. Sci China Chem, 2020, 63: 361-369 CrossRef Google Scholar

[35] Hong L, Yao H, Wu Z, Cui Y, Zhang T, Xu Y, Yu R, Liao Q, Gao B, Xian K, Woo HY, Ge Z, Hou J. Adv Mater, 2019, 31: 1903441 CrossRef Google Scholar

[36] Cui Y, Yao H, Hong L, Zhang T, Tang Y, Lin B, Xian K, Gao B, An C, Bi P, Ma W, Hou J. Natl Sci Rev, 2019, CrossRef Google Scholar

[37] Mo D, Chen H, Zhou J, Tang N, Han L, Zhu Y, Chao P, Lai H, Xie Z, He F. J Mater Chem A, 2020, 8: 8903-8912 CrossRef Google Scholar

[38] Yuan J, Zhang C, Chen H, Zhu C, Cheung SH, Qiu B, Cai F, Wei Q, Liu W, Yin H, Zhang R, Zhang J, Liu Y, Zhang H, Liu W, Peng H, Yang J, Meng L, Gao F, So S, Li Y, Zou Y. Sci China Chem, 2020, CrossRef Google Scholar

[39] Zou Y, Zhu C, Yuan J, Cai F, Meng L, Zhang H, Chen H, Li J, Qiu B, Peng H, Chen S, Hu Y, Yang C, Gao F, Li Y. Energy Environ Sci, 2020, CrossRef Google Scholar

[40] Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J. Adv Mater, 2020, 32: 1908205 CrossRef Google Scholar

[41] Gao W, Zhang M, Liu T, Ming R, An Q, Wu K, Xie D, Luo Z, Zhong C, Liu F, Zhang F, Yan H, Yang C. Adv Mater, 2018, 30: 1800052 CrossRef Google Scholar

[42] Cai F, Zhu C, Yuan J, Li Z, Meng L, Liu W, Peng H, Jiang L, Li Y, Zou Y. Chem Commun, 2020, 56: 4340-4343 CrossRef Google Scholar

[43] Cai F, Peng H, Chen H, Yuan J, Hai J, Lau TK, Wang J, Hu Y, Liu W, Lu X, Zou Y. J Mater Chem A, 2020, CrossRef Google Scholar

[44] Gao J, Gao W, Ma X, Hu Z, Xu C, Wang X, An Q, Yang C, Zhang X, Zhang F. Energy Environ Sci, 2020, 13: 958-967 CrossRef Google Scholar

[45] Zhang ZG, Yang Y, Yao J, Xue L, Chen S, Li X, Morrison W, Yang C, Li Y. Angew Chem Int Ed, 2017, 56: 13503-13507 CrossRef Google Scholar

[46] Jia T, Zhang J, Zhong W, Liang Y, Zhang K, Dong S, Ying L, Liu F, Wang X, Huang F, Cao Y. Nano Energy, 2020, 72: 104718 CrossRef Google Scholar

[47] Wang W, Wu Q, Sun R, Guo J, Wu Y, Shi M, Yang W, Li H, Min J. Joule, 2020, 4: 1070-1086 CrossRef Google Scholar

[48] Hu Z, Wang Z, An Q, Zhang F. Sci Bull, 2020, 65: 131-137 CrossRef Google Scholar

[49] Song W, Fanady B, Peng R, Hong L, Wu L, Zhang W, Yan T, Wu T, Chen S, Ge Z. Adv Energy Mater, 2020, 10: 2000136 CrossRef Google Scholar

[50] Xie Y, Cai Y, Zhu L, Xia R, Ye L, Feng X, Yip H, Liu F, Lu G, Tan S, Sun Y. Adv Funct Mater, 2020, : 2002181 CrossRef Google Scholar

[51] Chen X, Xu G, Zeng G, Gu H, Chen H, Xu H, Yao H, Li Y, Hou J, Li Y. Adv Mater, 2020, 32: 1908478 CrossRef Google Scholar

[52] Zhu L, Zhang M, Zhou G, Hao T, Xu J, Wang J, Qiu C, Prine N, Ali J, Feng W, Gu X, Ma Z, Tang Z, Zhu H, Ying L, Zhang Y, Liu F. Adv Energy Mater, 2020, 10: 1904234 CrossRef Google Scholar

[53] Sun R, Wu Q, Guo J, Wang T, Wu Y, Qiu B, Luo Z, Yang W, Hu Z, Guo J, Shi M, Yang C, Huang F, Li Y, Min J. Joule, 2020, 4: 407-419 CrossRef Google Scholar

[54] Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746-752 CrossRef Google Scholar

[55] Ma R, Liu T, Luo Z, Guo Q, Xiao Y, Chen Y, Li X, Luo S, Lu X, Zhang M, Li Y, Yan H. Sci China Chem, 2020, 63: 325-330 CrossRef Google Scholar

[56] Sun H, Liu T, Yu J, Lau TK, Zhang G, Zhang Y, Su M, Tang Y, Ma R, Liu B, Liang J, Feng K, Lu X, Guo X, Gao F, Yan H. Energy Environ Sci, 2019, 12: 3328-3337 CrossRef Google Scholar

[57] Chao P, Chen H, Zhu Y, Lai H, Mo D, Zheng N, Chang X, Meng H, He F. Adv Mater, 2020, 32: 1907059 CrossRef Google Scholar

[58] Sun C, Pan F, Chen S, Wang R, Sun R, Shang Z, Qiu B, Min J, Lv M, Meng L, Zhang C, Xiao M, Yang C, Li Y. Adv Mater, 2019, 31: 1905480 CrossRef Google Scholar

[59] Wu Y, Zheng Y, Yang H, Sun C, Dong Y, Cui C, Yan H, Li Y. Sci China Chem, 2020, 63: 265-271 CrossRef Google Scholar

[60] Sun C, Qin S, Wang R, Chen S, Pan F, Qiu B, Shang Z, Meng L, Zhang C, Xiao M, Yang C, Li Y. J Am Chem Soc, 2020, 142: 1465-1474 CrossRef Google Scholar

[61] Xu X, Feng K, Bi Z, Ma W, Zhang G, Peng Q. Adv Mater, 2019, 31: 1901872 CrossRef Google Scholar

[62] Wang T, Sun R, Shi M, Pan F, Hu Z, Huang F, Li Y, Min J. Adv Energy Mater, 2020, 10: 2000590 CrossRef Google Scholar

[63] Xiong J, Jin K, Jiang Y, Qin J, Wang T, Liu J, Liu Q, Peng H, Li X, Sun A, Meng X, Zhang L, Liu L, Li W, Fang Z, Jia X, Xiao Z, Feng Y, Zhang X, Sun K, Yang S, Shi S, Ding L. Sci Bull, 2019, 64: 1573-1576 CrossRef Google Scholar

[64] Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci Bull, 2020, 65: 272-275 CrossRef Google Scholar

[65] Dong X, Yang K, Tang H, Hu D, Chen S, Zhang J, Kan Z, Duan T, Hu C, Dai X, Xiao Z, Sun K, Lu S. Sol RRL, 2019, 4: 1900326 CrossRef Google Scholar

[66] Chen H, Hu D, Yang Q, Gao J, Fu J, Yang K, He H, Chen S, Kan Z, Duan T, Yang C, Ouyang J, Xiao Z, Sun K, Lu S. Joule, 2019, 3: 3034-3047 CrossRef Google Scholar

[67] Ge J, Xie L, Peng R, Fanady B, Huang J, Song W, Yan T, Zhang W, Ge Z. Angew Chem Int Ed, 2020, 59: 2808-2815 CrossRef Google Scholar

[68] Qiu B, Chen Z, Qin S, Yao J, Huang W, Meng L, Zhu H, Yang YM, Zhang Z, Li Y. Adv Mater, 2020, 32: 1908373 CrossRef Google Scholar

[69] Yue Q, Wu H, Zhou Z, Zhang M, Liu F, Zhu X. Adv Mater, 2019, 31: 1904283 CrossRef Google Scholar

[70] Zhou R, Jiang Z, Yang C, Yu J, Feng J, Adil MA, Deng D, Zou W, Zhang J, Lu K, Ma W, Gao F, Wei Z. Nat Commun, 2019, 10: 5393 CrossRef ADS Google Scholar

[71] Qin J, An C, Zhang J, Ma K, Yang Y, Zhang T, Li S, Xian K, Cui Y, Tang Y, Ma W, Yao H, Zhang S, Xu B, He C, Hou J. Sci China Mater, 2020, 63: 1142-1150 CrossRef Google Scholar

[72] Yu R, Yao H, Cui Y, Hong L, He C, Hou J. Adv Mater, 2019, 31: 1902302 CrossRef Google Scholar

[73] Pan MA, Lau TK, Tang Y, Wu YC, Liu T, Li K, Chen MC, Lu X, Ma W, Zhan C. J Mater Chem A, 2019, 7: 20713-20722 CrossRef Google Scholar

[74] Gao J, Wang J, An Q, Ma X, Hu Z, Xu C, Zhang X, Zhang F. Sci China Chem, 2019, 63: 83-91 CrossRef Google Scholar

[75] Yan T, Song W, Huang J, Peng R, Huang L, Ge Z. Adv Mater, 2019, 31: 1902210 CrossRef Google Scholar

[76] Ma X, Luo M, Gao W, Yuan J, An Q, Zhang M, Hu Z, Gao J, Wang J, Zou Y, Yang C, Zhang F. J Mater Chem A, 2019, 7: 7843-7851 CrossRef Google Scholar

[77] An Q, Ma X, Gao J, Zhang F. Sci Bull, 2019, 64: 504-506 CrossRef Google Scholar

[78] An Q, Wang J, Gao W, Ma X, Hu Z, Gao J, Xu C, Hao M, Zhang X, Yang C, Zhang F. Sci Bull, 2020, 65: 538-545 CrossRef Google Scholar

[79] Zhang J, Zhang Y, Fang J, Lu K, Wang Z, Ma W, Wei Z. J Am Chem Soc, 2015, 137: 8176-8183 CrossRef Google Scholar

[80] Zhan L, Li S, Lau TK, Cui Y, Lu X, Shi M, Li CZ, Li H, Hou J, Chen H. Energy Environ Sci, 2020, 13: 635-645 CrossRef Google Scholar

[81] Su D, Pan MA, Liu Z, Lau TK, Li X, Shen F, Huo S, Lu X, Xu A, Yan H, Zhan C. Chem Mater, 2019, 31: 8908-8917 CrossRef Google Scholar

[82] Ren M, Zhang G, Chen Z, Xiao J, Jiao X, Zou Y, Yip HL, Cao Y. ACS Appl Mater Interfaces, 2020, 12: 13077-13086 CrossRef Google Scholar

[83] Du X, Zhao J, Zhang H, Lu X, Zhou L, Chen Z, Lin H, Zheng C, Tao S. J Mater Chem A, 2019, 7: 20139-20150 CrossRef Google Scholar

[84] Song J, Li C, Zhu L, Guo J, Xu J, Zhang X, Weng K, Zhang K, Min J, Hao X, Zhang Y, Liu F, Sun Y. Adv Mater, 2019, 31: 1905645 CrossRef Google Scholar

[85] Li K, Wu Y, Tang Y, Pan M, Ma W, Fu H, Zhan C, Yao J. Adv Energy Mater, 2019, 9: 1901728 CrossRef Google Scholar

[86] Ma Y, Zhou X, Cai D, Tu Q, Ma W, Zheng Q. Mater Horiz, 2020, 7: 117-124 CrossRef Google Scholar

[87] Du X, Yuan Y, Zhou L, Lin H, Zheng C, Luo J, Chen Z, Tao S, Liao L. Adv Funct Mater, 2020, 30: 1909837 CrossRef Google Scholar

[88] Xie G, Zhang Z, Su Z, Zhang X, Zhang J. Nano Energy, 2020, 69: 104447 CrossRef Google Scholar

[89] Yan T, Ge J, Lei T, Zhang W, Song W, Fanady B, Zhang D, Chen S, Peng R, Ge Z. J Mater Chem A, 2019, 7: 25894-25899 CrossRef Google Scholar

[90] Xu X, Feng K, Lee YW, Woo HY, Zhang G, Peng Q. Adv Funct Mater, 2020, 30: 1907570 CrossRef Google Scholar

[91] Zhang Y, Cai F, Yuan J, Wei Q, Zhou L, Qiu B, Hu Y, Li Y, Peng H, Zou Y. Phys Chem Chem Phys, 2019, 21: 26557-26563 CrossRef ADS Google Scholar

[92] Liu Y, Cheng P, Yuan J, Huang T, Wang R, Meng D, Ndefru B, Zou Y, Sun B, Yang Y. ACS Energy Lett, 2019, 4: 1535-1540 CrossRef Google Scholar

[93] Liu B, Wang Y, Chen P, Zhang X, Sun H, Tang Y, Liao Q, Huang J, Wang H, Meng H, Guo X. ACS Appl Mater Interfaces, 2019, 11: 33505-33514 CrossRef Google Scholar

[94] Lin Y, Adilbekova B, Firdaus Y, Yengel E, Faber H, Sajjad M, Zheng X, Yarali E, Seitkhan A, Bakr OM, El-Labban A, Schwingenschlögl U, Tung V, McCulloch I, Laquai F, Anthopoulos TD. Adv Mater, 2019, 31: 1902965 CrossRef Google Scholar

[95] Lin Y, Firdaus Y, Nugraha MI, Liu F, Karuthedath S, Emwas A‐, Zhang W, Seitkhan A, Neophytou M, Faber H, Yengel E, McCulloch I, Tsetseris L, Laquai F, Anthopoulos TD. Adv Sci, 2020, 7: 1903419 CrossRef Google Scholar

[96] Pan F, Sun C, Li Y, Tang D, Zou Y, Li X, Bai S, Wei X, Lv M, Chen X, Li Y. Energy Environ Sci, 2019, 12: 3400-3411 CrossRef Google Scholar

[97] Yang Q, Yu S, Fu P, Yu W, Liu Y, Liu X, Feng Z, Guo X, Li C. Adv Funct Mater, 2020, 30: 1910205 CrossRef Google Scholar

  • Scheme 1

    Synthetic methods for the DA′D central fused rings of the A-DA’D-A NFAs.

  • Figure 1

    Chemical structures of the A-DA′D-A NFAs.

  • Figure 2

    Chemical structures of polymer donors pairing with the A-DA′D-A acceptors.

  • Figure 3

    Chemical structures of small-molecule donors pairing with A-DA′D-A acceptors.

  • Figure 4

    Chemical structures of the third component (serve as acceptor) in A-DAꞌD-A acceptor-based ternary OSCs.

  • Table 1   Performance of the A-DAꞌD-A acceptors-based OSCs with binary active layer

    Active layer

    Ratio (w/w)

    Active area (cm2)

    Voc (V)

    Jsc(mA cm−2)

    FF (%)

    PCE (%)

    Ref.

    HFQx-T:BZIC

    1:1.5

    0.050

    0.840

    12.67

    59.00

    6.30

    [22]

    PBDB-T:Y1

    1:1

    0.100

    0.870

    22.44

    69.10

    13.42

    [24]

    PBDB-T:Y2

    1:1

    0.100

    0.820

    23.56

    69.40

    13.40

    [24]

    PBDB-T:Y9

    1:1

    0.900

    23.28

    63.00

    13.26

    [28]

    PBDB-T:Y5

    1:1.5

    0.070

    0.870

    22.60

    71.40

    14.00

    [29]

    PM6:Y6

    1:1.2

    0.050

    0.830

    25.30

    74.80

    15.70

    [16]

    PM6:Y3

    1:1

    0.100

    0.838

    24.80

    71.21

    14.80

    [30]

    PM6:Y15

    1:1.8

    0.867

    23.79

    68.49

    14.13

    [31]

    PM6:BTP-4Cl

    1:1

    0.090

    0.867

    25.40

    75.00

    16.50

    [32]

    PM6:N3

    1:1.2

    0.059

    0.837

    25.81

    73.90

    15.98

    [33]

    PM6:BTP-4F-12

    1:1.2

    0.037

    0.855

    25.30

    76.00

    16.40

    [35]

    PM6:BTP-4Cl-12

    1:1.2

    0.060

    0.858

    25.60

    77.60

    17.00

    [36]

    PM6:BTIC-BO-4Cl

    1:1.2

    0.850

    25.26

    76.25

    16.43

    [37]

    PM6:Y11

    1:1.5

    0.160

    0.833

    26.74

    74.33

    16.54

    [21]

    PM6:Y18

    1:1.5

    0.050

    0.840

    25.71

    76.50

    16.52

    [39]

    PM6:BTP-eC9

    1:1.2

    0.090

    0.839

    26.20

    81.10

    17.80

    [40]

    PM6:AQx-1

    1:1.2

    0.050

    0.893

    22.18

    67.14

    13.31

    [6]

    PM6:AQx-2

    1:1.2

    0.050

    0.860

    25.38

    76.25

    16.64

    [27]

    PM6:Y21

    1:1

    0.050

    0.830

    24.90

    74.40

    15.40

    [42]

    PM6:Y6flexible

    1:1.2

    0.832

    25.05

    72.97

    15.21

    [51]

    PM6:Y6

    1:1.2

    0.050

    0.835

    26.52

    76.21

    16.88

    [52]

    PM7:Y6

    1:1.2

    0.059

    0.897

    25.64

    74.00

    17.03

    [55]

    S1:Y6

    1:1.2

    0.059

    0.877

    25.40

    73.70

    16.42

    [56]

    PBTT-F:Y6

    1:1.1

    0.840

    24.80

    77.10

    16.10

    [57]

    PTQ10:Y6

    1:1.2

    0.047

    0.870

    24.81

    75.10

    16.21

    [58]

    PTQ10:Y6

    1:1.2

    0.076

    0.826

    26.65

    75.10

    16.53

    [59]

    PTQ11:TPT10

    1:1.2

    0.050

    0.880

    24.79

    74.80

    16.32

    [60]

    Pt10:Y6

    1:1.3

    0.040

    0.810

    26.45

    76.30

    16.35

    [61]

    PM6-Ir1:Y6

    1:1.2

    0.050

    0.845

    26.15

    78.40

    17.32

    [62]

    L1:Y6

    1:1

    0.040

    0.830

    24.49

    71.80

    14.63

    [63]

    D16:Y6

    1:1

    0.040

    0.850

    26.61

    73.80

    16.72

    [63]

    D18:Y6

    1:1.6

    0.040

    0.859

    27.70

    76.60

    18.22

    [64]

    BIHTR:Y6

    2.5:1

    0.110

    0.840

    21.50

    68.40

    12.30

    [65]

    BTR-Cl:Y6

    1.6:1

    0.110

    0.860

    24.17

    65.50

    13.61

    [66]

    BTEC-2F:Y6

    1:1

    0.040

    0.854

    21.55

    72.35

    13.34

    [67]

    SM1-F:Y6

    2.2:1

    0.050

    0.866

    23.25

    69.90

    14.07

    [68]

    BSFTR:Y6

    1.25:1

    0.050

    0.850

    23.16

    69.66

    13.69

    [69]

    ZR1:Y6

    1:0.5

    0.040

    0.861

    24.34

    68.44

    14.34

    [70]

    B1:BO-4Cl

    1:1

    0.037

    0.830

    25.27

    73.00

    15.30

    [71]

    PM6:Y6(BiOCl NPs)

    1:1.2

    0.045

    0.830

    27.07

    71.70

    16.11

    [93]

    PM6:Y6(PDINO-G)

    1:1.2

    0.046

    0.850

    25.65

    75.78

    16.52

    [96]

    PM6:Y6(g-C3N4)

    1:1.2

    0.040

    0.840

    26.71

    73.00

    16.38

    [97]

  • Table 2   Performance of the A-DAꞌD-A acceptors-based OSCs with ternary active layer

    Active layer

    Ratio (w/w)

    Active area (cm2)

    Voc (V)

    Jsc(mA cm−2)

    FF (%)

    PCE (%)

    Ref.

    PM6:N3:PC71BM

    1:0.96:0.24

    0.059

    0.850

    25.71

    76.60

    16.74

    [33]

    PM6:Y6-C2:PC71BM

    1:1:0.2

    0.040

    0.859

    25.73

    77.20

    17.06

    [34]

    PM6:Y18:PC71BM

    1:1.5:0.2

    0.050

    0.841

    26.31

    77.40

    17.11

    [39]

    PM7:BP-4F:MF1thick-film

    1:0.96:0.24

    0.038

    0.882

    23.06

    71.62

    14.57

    [44]

    PM6:Y6:PC61BM

    1:1.2:0.2

    0.845

    25.40

    77.00

    16.50

    [72]

    PM6:Y6:PC71BM

    1:1.2:0.2

    0.040

    0.861

    25.10

    77.20

    16.70

    [73]

    PM6:Y6:PC71BM

    1:1.2:0.2

    0.038

    0.868

    25.44

    75.66

    16.71

    [74]

    PBDB-T:Y16:MeIC1

    1:1.02:0.18

    0.038

    0.909

    22.76

    68.22

    14.11

    [76]

    PM6:Y6:IT-4F

    1:0.96:0.24

    0.038

    0.844

    25.40

    75.90

    16.27

    [77]

    PM6:Y6:MF1

    1:1.08:0.12

    0.853

    25.68

    78.61

    17.22

    [78]

    PM6:Y6:BTP-M

    1:0.96:0.24

    0.040

    0.875

    26.56

    73.46

    17.03

    [80]

    PM6:Y6:IN-4F

    1:1.2:0.1

    0.040

    0.850

    25.70

    74.50

    16.30

    [81]

    PM6:Y6:FBR

    1:0.96:0.24

    0.830

    26.30

    75.60

    16.4

    [82]

    PM6:Y6:DIBC

    1:1.2:0.1

    0.830

    25.61

    77.12

    16.41

    [83]

    PM6:Y6:3TP3T-4F

    1:1.02:0.18

    0.039

    0.850

    26.10

    75.40

    16.70

    [84]

    PM6:Y6:IDIC

    1:1:0.2

    0.868

    25.39

    74.92

    16.51

    [85]

    PM6:Y6:BTF

    1:1.2:0.1

    0.040

    0.853

    26.11

    74.22

    16.53

    [86]

    PM6:Y6:APDC-TPDA

    1:1.2:0.1

    0.023

    0.840

    25.98

    77.50

    16.96

    [87]

    PM6:J71:Y6

    0.9:0.1:1.2

    0.038

    0.850

    25.55

    76.00

    16.50

    [88]

    PM6:SM1:Y6

    0.85:0.15:1.2

    0.831

    25.70

    77.50

    16.55

    [89]

    PNDT-ST:PBDT-ST:Y6-T

    0.4:0.6:1.2

    0.040

    0.909

    24.04

    75.80

    16.57

    [90]

    PM6:Y6:PC71BM

    1:1:0.2

    0.100

    0.840

    26.00

    78.00

    17.00

    [94]

    PM6:Y6:PC71BM

    1:1:0.2

    0.100

    0.840

    26.30

    77.00

    17.10

    [95]

qqqq

Contact and support