logo

SCIENCE CHINA Chemistry, Volume 63 , Issue 10 : 1469-1476(2020) https://doi.org/10.1007/s11426-020-9795-x

Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts

More info
  • ReceivedFeb 28, 2020
  • AcceptedJun 17, 2020
  • PublishedJul 27, 2020

Abstract


Funding

the National Natural Science Foundation of China(21871206,21701122)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21871206, 21701122).


Interest statement

The authors declare no conflict of interest.


Contributions statement

These authors contributed equally to this work.


Supplementary data

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Tang C, Qiao SZ. Chem Soc Rev, 2019, 483166-3180 CrossRef Google Scholar

[2] Hao YC, Guo Y, Chen LW, Shu M, Wang XY, Bu TA, Gao WY, Zhang N, Su X, Feng X, Zhou JW, Wang B, Hu CW, Yin AX, Si R, Zhang YW, Yan CH. Nat Catal, 2019, 2448-456 CrossRef Google Scholar

[3] Canfield DE, Glazer AN, Falkowski PG. Science, 2010, 330192-196 CrossRef ADS Google Scholar

[4] Fang Z, Yu G. Sci China Chem, 2018, 611045-1046 CrossRef Google Scholar

[5] Wang P, Chang F, Gao W, Guo J, Wu G, He T, Chen P. Nat Chem, 2016, 964-70 CrossRef ADS Google Scholar

[6] Yang X, Kattel S, Nash J, Chang X, Lee JH, Yan Y, Chen JG, Xu B. Angew Chem Int Ed, 2019, 5813768-13772 CrossRef Google Scholar

[7] Hill PJ, Doyle LR, Crawford AD, Myers WK, Ashley AE. J Am Chem Soc, 2016, 13813521-13524 CrossRef Google Scholar

[8] Patil BS, Wang Q, Hessel V, Lang J. Catal Today, 2015, 25649-66 CrossRef Google Scholar

[9] Liu Y, Cheng M, He Z, Gu B, Xiao C, Zhou T, Guo Z, Liu J, He H, Ye B, Pan B, Xie Y. Angew Chem Int Ed, 2019, 58731-735 CrossRef Google Scholar

[10] Chen JG, Crooks RM, Seefeldt LC, Bren KL, Bullock RM, Darensbourg MY, Holland PL, Hoffman B, Janik MJ, Jones AK, Kanatzidis MG, King P, Lancaster KM, Lymar SV, Pfromm P, Schneider WF, Schrock RR. Science, 2018, 360eaar6611 CrossRef Google Scholar

[11] Comer BM, Fuentes P, Dimkpa CO, Liu YH, Fernandez CA, Arora P, Realff M, Singh U, Hatzell MC, Medford AJ. Joule, 2019, 31578-1605 CrossRef Google Scholar

[12] Lan R, Tao S. Front Energy Res, 2014, 235 CrossRef Google Scholar

[13] Wang Y, Shi M, Bao D, Meng F, Zhang Q, Zhou Y, Liu K, Zhang Y, Wang J, Chen Z, Liu D, Jiang Z, Luo M, Gu L, Zhang Q, Cao X, Yao Y, Shao M, Zhang Y, Zhang X, Chen JG, Yan J, Jiang Q. Angew Chem Int Ed, 2019, 589464-9469 CrossRef Google Scholar

[14] Andersen SZ, Čolić V, Yang S, Schwalbe JA, Nielander AC, McEnaney JM, Enemark-Rasmussen K, Baker JG, Singh AR, Rohr BA, Statt MJ, Blair SJ, Mezzavilla S, Kibsgaard J, Vesborg PCK, Cargnello M, Bent SF, Jaramillo TF, Stephens IEL, Nørskov JK, Chorkendorff I. Nature, 2019, 570504-508 CrossRef ADS Google Scholar

[15] Huang P, Liu W, He Z, Xiao C, Yao T, Zou Y, Wang C, Qi Z, Tong W, Pan B, Wei S, Xie Y. Sci China Chem, 2018, 611187-1196 CrossRef Google Scholar

[16] Wang L, Xia M, Wang H, Huang K, Qian C, Maravelias CT, Ozin GA. Joule, 2018, 21055-1074 CrossRef Google Scholar

[17] Légaré MA, Bélanger-Chabot G, Dewhurst RD, Welz E, Krummenacher I, Engels B, Braunschweig H. Science, 2018, 359896-900 CrossRef ADS Google Scholar

[18] Jia H, Du A, Zhang H, Yang J, Jiang R, Wang J, Zhang C. J Am Chem Soc, 2019, 1415083-5086 CrossRef Google Scholar

[19] Gao X, An L, Qu D, Jiang W, Chai Y, Sun S, Liu X, Sun Z. Sci Bull, 2019, 64918-925 CrossRef Google Scholar

[20] Hansen AT, Dolph CL, Foufoula-Georgiou E, Finlay JC. Nat Geosci, 2018, 11127-132 CrossRef ADS Google Scholar

[21] Heck KN, Garcia-Segura S, Westerhoff P, Wong MS. Acc Chem Res, 2019, 52906-915 CrossRef Google Scholar

[22] Martínez J, Ortiz A, Ortiz I. Appl Catal B-Environ, 2017, 20742-59 CrossRef Google Scholar

[23] González Pérez O, Bisang JM. Electrochim Acta, 2016, 194448-453 CrossRef Google Scholar

[24] Garcia-Segura S, Lanzarini-Lopes M, Hristovski K, Westerhoff P. Appl Catal B-Environ, 2018, 236546-568 CrossRef Google Scholar

[25] Stirling A, Pápai I, Mink J, Salahub DR. J Chem Phys, 1994, 1002910-2923 CrossRef ADS Google Scholar

[26] Carlson RM. Anal Chem, 1978, 501528-1531 CrossRef Google Scholar

[27] Wang Y, Yu Y, Jia R, Zhang C, Zhang B. Natl Sci Rev, 2019, 6730-738 CrossRef Google Scholar

[28] Wang Y, Zhou W, Jia R, Yu Y, Zhang B. Angew Chem Int Ed, 2020, 595350-5354 CrossRef Google Scholar

[29] Li XH, Antonietti M. Chem Soc Rev, 2013, 426593-6604 CrossRef Google Scholar

[30] Lin YX, Zhang SN, Xue ZH, Zhang JJ, Su H, Zhao TJ, Zhai GY, Li XH, Antonietti M, Chen JS. Nat Commun, 2019, 104380 CrossRef ADS Google Scholar

[31] Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang Z. Science, 2015, 347970-974 CrossRef ADS Google Scholar

[32] Zhuang Z, Li Y, Li Z, Lv F, Lang Z, Zhao K, Zhou L, Moskaleva L, Guo S, Mai L. Angew Chem Int Ed, 2018, 57496-500 CrossRef Google Scholar

[33] Li D, Ding LX, Wang S, Cai D, Wang H. J Mater Chem A, 2014, 25625-5630 CrossRef Google Scholar

[34] Chen M, Zhou Q, Du X, Zhang J, Li W, Lu Y, Zhang D, Qi P, Tang Y. J Alloys Compd, 2019, 783363-370 CrossRef Google Scholar

[35] Liao L, Zhang Q, Su Z, Zhao Z, Wang Y, Li Y, Lu X, Wei D, Feng G, Yu Q, Cai X, Zhao J, Ren Z, Fang H, Robles-Hernandez F, Baldelli S, Bao J. Nat Nanotech, 2014, 969-73 CrossRef ADS Google Scholar

[36] Lu Y, Dong CL, Huang YC, Zou Y, Liu Y, Li Y, Zhang N, Chen W, Zhou L, Lin H, Wang S. Sci China Chem, 2020, 63980-986 CrossRef Google Scholar

[37] Su H, Zhang KX, Zhang B, Wang HH, Yu QY, Li XH, Antonietti M, Chen JS. J Am Chem Soc, 2017, 139811-818 CrossRef Google Scholar

[38] Zhang C, Shi Y, Yu Y, Du Y, Zhang B. ACS Catal, 2018, 88077-8083 CrossRef Google Scholar

[39] Gao R, Liu L, Hu Z, Zhang P, Cao X, Wang B, Liu X. J Mater Chem A, 2015, 317598-17605 CrossRef Google Scholar

[40] Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC. Appl Surf Sci, 2011, 2572717-2730 CrossRef ADS Google Scholar

[41] Zhang L, Ding L, Chen G, Yang X, Wang H. Angew Chem Int Ed, 2019, 582612-2616 CrossRef Google Scholar

[42] Zhou P, He J, Zou Y, Wang Y, Xie C, Chen R, Zang S, Wang S. Sci China Chem, 2019, 621365-1370 CrossRef Google Scholar

[43] da Cunha MCPM, De Souza JPI, Nart FC. Langmuir, 2000, 16771-777 CrossRef Google Scholar

[44] Hu C, Zhang L, Li L, Zhu W, Deng W, Dong H, Zhao ZJ, Gong J. Sci China Chem, 2019, 621030-1036 CrossRef Google Scholar

[45] Figueiredo MC, Solla-Gullón J, Vidal-Iglesias FJ, Climent V, Feliu JM. Catal Today, 2013, 2022-11 CrossRef Google Scholar

[46] Pérez-Gallent E, Figueiredo MC, Katsounaros I, Koper MTM. Electrochim Acta, 2017, 22777-84 CrossRef Google Scholar

[47] Guo Y, Stroka JR, Kandemir B, Dickerson CE, Bren KL. J Am Chem Soc, 2018, 14016888-16892 CrossRef Google Scholar

  • Scheme 1

    The schematic illustration for nitrate electroreduction to ammonia over Co/CoO NSAs (color online).

  • Figure 1

    (a) Schematic illustration for the preparation of Co/CoO NSAs on Ni foams. (b) XRD pattern of Co/CoO NSAs powders. (c) A low-magnification SEM image of Co/CoO NSAs (inset: a high-magnification SEM image of Co/CoO NSAs). (d) A TEM image of Co/CoO NSAs. (e) A HRTEM image (the red dotted areas are Co domains) of Co/CoO NSAs (color online).

  • Figure 2

    (a) UPS spectra in the cutoff energy regions of CoO NSAs (inset shows the onset energy region). (b) UPS spectra in the cutoff energy regions of Co NSAs. (c) Energy band diagrams of metal Co and p-type semiconductor CoO (EF: Fermi level; EV: valence band energy; EC: conduction band energy). (d) UPS spectra in the cutoff energy region of Co/CoO NSAs (inset shows the onset energy region). (e) The illustration of the electron transfer in the integrated Co/CoO NSAs. (f) XPS spectra of Co 2p3/2 and Co 2p1/2 in Co NSAs, Co/CoO NSAs and CoO NSAs (color online).

  • Figure 3

    (a) The LSV curves of Co/CoO NSA electrodes in 0.1 MNa2SO4 with and without NaNO3 (inset is the photograph of chromogenic results). (b) The conversion rate of nitrates and the FE of ammonia over Co/CoO NSA electrocatalysts. (c) The selectivity and the yield rate of ammonia at different potentials of Co/CoO NSAs. (d) Time-dependent concentration of nitrates and ammonia during reduction reactions over Co/CoO NSAs at −1.3 V vs. SCE (color online).

  • Figure 4

    (a) 1H NMR spectra (600 MHz) of standard samples ((15NH4)2- SO4 and (14NH4)2SO4)) and electrolytes after the NO3 reduction at −1.3 Vvs. SCE for 2 h using 14NO3 and 15NO3 as N-source. (b) Cycle-dependent conversion rates of NO3 and selectivity of ammonia over Co/CoO NSAs at −1.3 V. (c) The ammonia selectivity of Co/CoO NSAs under different nitrate concentration. (d) The conversion rates of nitrates and the FE of ammonia over different samples (color online).

  • Figure 5

    (a) DEMS measurements of electrocatalytic reduction of nitrates over Co/CoO NSAs. (b) In situ FTIR spectra of electrocatalytic reduction of nitrates over Co/CoO NSAs. (c) The diagram of free energy by DFT calculations. (d) The calculated relative reaction energy of the H2 formation on Co and Co/CoO NSAs. (e) The calculated relative reaction energy of the formation of NO, N2, N2H4 and N2O on Co and Co/CoO NSAs (color online).

qqqq

Contact and support